Skip to main content
Log in

Big bang bifurcations and Allee effect in Blumberg’s dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper concerns dynamics and bifurcations properties of a class of continuous-defined one-dimensional maps, in a three-dimensional parameter space: Blumberg’s functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon, associated with the stability of a fixed point. A central point of our investigation is the study of bifurcations structure for this class of functions. We verified that under some sufficient conditions, Blumberg’s functions have a particular bifurcations structure: the big bang bifurcations of the so-called “box-within-a-box” type, but for different kinds of boxes. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct attractors. This work contributes to clarify the big bang bifurcation analysis for continuous maps. To support our results, we present fold and flip bifurcations curves and surfaces, and numerical simulations of several bifurcation diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Blumberg, A.A.: Logistic growth rate functions. J. Theor. Biol. 21, 42–44 (1968)

    Article  Google Scholar 

  2. Tsoularis, A., Wallace, J.: Analysis of logistic growth models. Math. Biosci. 179(1), 21–55 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Turner, M.E., Bradley, E.L., Kirk, K.A., Pruitt, K.M.: A theory of growth. Math. Biosci. 29, 367–373 (1976)

    Article  MATH  Google Scholar 

  4. Peschel, M., Mende, W.: The Predator-Prey Model. Do We Leave in a Volterra World?. Springer, Wien (1986)

    Google Scholar 

  5. Pruitt, K.M., Turner, M.E.: In: Agris, P.F. (ed.) A kinetic theory for analysis of complex systems, in Biomolecular Structure and Function, pp. 257–265. Academic Press, New York (1978)

  6. Carrillo, M., Gonzlez, J.: Fitting a growth model to number of tourist places in Tenerife. Syst. Anal. Model. Simul. 42, 895–906 (2002)

    MATH  Google Scholar 

  7. Skubica, E., Taborskya, M., McNamarac, J.M., Houston, A.I.: When to parasitize? A dynamic optimization model of reproductive strategies in a cooperative breeder. J. Theor. Biol. 227, 487–501 (2004)

    Article  Google Scholar 

  8. Buis, R.: On the generalization of the logistic law of growth. Acta Biotheoretica 39, 185–195 (1991)

    Article  Google Scholar 

  9. Clark, C.W.: Mathematical Bioeconomic: The Optimal Management of Renewable Resources. Wiley, New York (1990)

    MATH  Google Scholar 

  10. Aleixo, S.M., Rocha, J.L., Pestana, D.D.: Populational growth models proportional to beta densities with Allee effect. Am. Inst. Phys. 1124, 3–12 (2009)

    MathSciNet  Google Scholar 

  11. Aleixo, S.M., Rocha, J.L.: Generalized models from \(Beta(p,2)\) densities with strong Allee effect: dynamical approach. J. Comput. Inf. Technol. 20, 201–207 (2012)

    Google Scholar 

  12. Rocha, J.L., Aleixo, S.M.: Dynamical analysis in growth models: Blumberg’s equation. Discret. Contin. Dyn. Syst. Ser. B 18(3), 783–795 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Allee, W.C.: Animal Aggregations. University of Chicago Press, Chicago (1931)

    Google Scholar 

  14. Rocha, J.L., Fournier-Prunaret, D., Taha, A.-K.: Strong and weak Allee effects and chaotic dynamics in Richards’ growths. Discret. Contin. Dyn. Syst. Ser. B 18(9), 2397–2425 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mira, C.: Chaotic Dynamics from the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism. World Scientific, Singapore (1987)

    Book  MATH  Google Scholar 

  16. Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  17. Singer, D.: Stable orbits and bifurcations of maps of the interval. SIAM J. Appl. Math. 35, 260–267 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sharkovsky, A.N., Kolyada, S.F., Sivak, A.G., Fedorenko, V.V.: Dynamics of One-Dimensional Maps. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  19. Rocha, J.L., Aleixo, S.M.: An extension of gompertzian growth dynamics: Weibull and Fréchet models. Math. Biosci. Eng. 10(2), 379–398 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gyllenberg, M., Osipov, A.V., Soderbacka, G.: Bifurcation analysis of a metapopulation model with sources and sinks. J. Nonlinear Sci. 6, 329–366 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schreiber, S.: Chaos and population disappearances in simple ecological models. J. Math. Biol. 42, 239–260 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mira, C., Gardini, L., Barugola, A., Cathala, J.-C.: Chaotic Dynamics in Two-Dimensional Noninvertible Maps. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  23. Fournier-Prunaret, D.: The bifurcation structure of a family of degree one circle endomorphisms. Int. J. Bifurc. Chaos 1, 823–838 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Carcasses, J.-P.: Sur Quelques Structures Complexes de Bifurcations de Systemes Dynamiques. Doctorat de L’Universite Paul Sabatier, INSA, Toulouse (1990)

    Google Scholar 

  25. Avrutin, V., Wackenhut, G., Schanz, M.: On dynamical systems with piecewise defined system functions. In: Proceedings of International Conference on Tools for Mathematical Modelling (Mathtols’99), St. Petersburg, pp. 4–20 (1999)

  26. Avrutin, V., Schanz, M.: Multi-parametric bifurcations in a scalar piecewise-linear map. Nonlinearity 19, 531–552 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Avrutin, V., Schanz, M., Banerjee, S.: Multi-parametric bifurcations in a piecewise-linear discontinuous map. Nonlinearity 19, 1875–1906 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Avrutin, V., Granados, A., Schanz, M.: Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional map. Nonlinearity 24, 2575–2598 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gardini, L., Merlone, U., Tramontana, F.: Inertia in binary choices: continuity breaking and big-bang bifurcation points. J. Econ. Behav. Organ. 80, 153–167 (2011)

    Article  Google Scholar 

  30. Mira, C., Gardini, L.: From the box-within-a-box bifurcation organization to the Julia set. Part I: revisited properties of the sets generated by a quadratic complex map with a real parameter. Int. J. Bifurc. Chaos 19, 281–327 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mira, C.: On some codimension three bifurcations occurring in maps. Spring area-crossroad area transitions. In: Proceedings of European Conference on Iteration Theory (ECIT 1991), Lampreia, J.P., Llibre, J., et al. (Eds.), World Scientific, Singapore, pp. 168–177 (1992)

Download references

Acknowledgments

This research has been partially sponsored by the national funds through the Fundação Nacional para a Ciência e Tecnologia, Portugal – FCT, under the project PEst-OE/MAT/UI0006/2014, CEAUL and ISEL. The authors are grateful to the anonymous referees for a careful checking of the details and for helpful comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leonel Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, J.L., Fournier-Prunaret, D. & Taha, AK. Big bang bifurcations and Allee effect in Blumberg’s dynamics. Nonlinear Dyn 77, 1749–1771 (2014). https://doi.org/10.1007/s11071-014-1415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1415-0

Keywords

Navigation