Skip to main content
Log in

Input shaping control of a nuclear power plant’s fuel transport system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the residual vibration control problem of a nuclear power plant’s fuel-transport system is discussed. The purpose of the system is to transport fuel rods to the target position within the minimum time. But according to observations, the rods oscillate at the end of the maneuver, causing an undesirable delay in the operation and affecting the system’s performance in terms both of productivity and of safety. In the present study, a mathematical model of the system was developed to simulate the under-water sway response of the rod while keeping in view the effects of the hydrodynamic forces imposed by the surrounding water. Experiments were performed to validate the model’s correctness. Further, simulation results were used to design the input shaping control that generates shaped velocity commands for transport of the fuel rods to the target position with the minimum residual vibration. It was observed that due to the under-water maneuvering, the fuel-handling system behaves as a highly damped process and that the generated shaped velocity commands fail to effect the desired suppression of the residual vibration. Therefore, keeping in view the highly damped nature of the system, a modified shaped command was generated that transported the fuel rods to the target position with the minimum residual vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee, S.S., Kim, S.H., Suh, K.Y.: The design features of the advanced power reactor 1400. Nucl. Eng. Technol. 41(8), 995–1004 (2009)

    Article  Google Scholar 

  2. Hong, K.-S., Bentsman, J.: Direct adaptive control of parabolic systems: algorithm synthesis, and convergence and stability analysis. IEEE Trans. Autom. Control 39(10), 2018–2033 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.-S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ngo, Q.H., Hong, K.-S.: Adaptive sliding mode control of container cranes. IET Control Theory Appl. 6(5), 662–668 (2012)

    Article  MathSciNet  Google Scholar 

  5. Hong, K.-S.: An open-loop control for underactuated manipulators using oscillatory inputs: steering capability of an unactuated joint. IEEE Trans. Control Syst. Technol. 10(3), 469–480 (2002)

    Article  Google Scholar 

  6. Rehan, M., Hong, K.-S.: Decoupled-architecture-based nonlinear anti-windup design for a class of nonlinear systems. Nonlinear Dyn. 73(3), 1955–1967 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. El-Ganaini, W.A., Saeed, N.A., Eissa, M.: Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dyn. 72(3), 517–537 (2013)

    Article  MathSciNet  Google Scholar 

  8. Ngo, Q.H., Hong, K.-S.: Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans. Mechatron. 7(2), 201–209 (2012)

    Article  Google Scholar 

  9. He, W., Zhang, S., Ge, S.S.: Boundary control of a flexible riser with the application to marine installation. IEEE Trans. Ind. Electron. 60(12), 5802–5810 (2013)

    Article  Google Scholar 

  10. Sagirli, A., Azeloglu, C.O., Guclu, R., Yazici, H.: Self-tuning fuzzy logic control of crane structures against earthquake induced vibration. Nonlinear Dyn. 64(4), 375–384 (2011)

    Article  Google Scholar 

  11. Azeloglu, C.O., Sagirli, A., Edincliler, A.: Mathematical modelling of the container cranes under seismic loading and proving by shake table. Nonlinear Dyn. 73(1–2), 143–154 (2013)

    Article  Google Scholar 

  12. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Control 9(7), 863–908 (2003)

    Article  MATH  Google Scholar 

  13. Fortgang, J., Singhose, W.: Concurrent design of vibration absorbers and input shapers. J. Dyn. Syst. Meas. Control 127, 329–335 (2005)

    Article  Google Scholar 

  14. Smith, O.J.M.: Feedback Control Systems. McGraw-Hill, New York (1958)

    Google Scholar 

  15. Singer, N.C.: Residual vibration reduction in computer controlled machines. Ph.D. thesis and MIT Artificial Intelligence Laboratory Technical Report No. 1030. Massachusetts Institute of Technology. Cambridge, MA (1990).

  16. Singer, N.C., Seering, W.P.: Preshaping command inputs to reduce system vibration. J. Dyn. Syst. Meas. Control 112, 76–82 (1990)

    Article  Google Scholar 

  17. Singhose, W., Seering, W., Singer, N.: Residual vibration reduction using vector diagrams to generate shaped inputs. J. Dyn. Syst. Meas. Control 116, 654–659 (1994)

    Google Scholar 

  18. Park, U.H., Lee, J.W., Lim, B.D., Sung, Y.G.: Design and sensitivity analysis of an input shaping filter in the Z-plane. J. Sound Vib. 243(1), 157–171 (2001)

    Article  Google Scholar 

  19. Singhose, W., Kim, D., Kenison, M.: Input shaping control of double pendulum bridge crane oscillations. J. Dyn. Syst. Meas. Control 130(3), 034504 (2008)

    Article  Google Scholar 

  20. Singhose, W., Vaughan, J.: Reducing vibration by digital filtering and input shaping. IEEE Trans. Control Syst. Technol. 19(6), 1410–1420 (2011)

    Article  Google Scholar 

  21. Singhose, W., Bohlke, K., Seering, W.: Fuel-efficient pulse command profiles for flexible spacecraft. J. Guid. Control Dyn. 19(4), 954–960 (1996)

    Article  MATH  Google Scholar 

  22. Singhose, W.: Command shaping for flexible systems: a review of the first 50 years. Int. J. Precis. Eng. Manuf. 10(4), 153–168 (2009)

    Article  Google Scholar 

  23. Daqaq, M.F., Reddy, C.K., Nayfeh, A.H.: Input-shaping control of nonlinear MEMS. Nonlinear Dyn. 54(1–2), 167–179 (2008)

    Article  MATH  Google Scholar 

  24. Singhose, W., Porter, L., Kenison, M., Kriikku, E.: Effects of hoisting on the input shaping control of gantry cranes. Control Eng. Pract. 8(10), 1159–1165 (2000)

    Article  Google Scholar 

  25. Hong, K.-S., Park, B.J., Lee, M.H.: Two-stage control for container cranes. JSME Int. J. Ser. C 43(2), 273–282 (2000)

    Article  Google Scholar 

  26. Hong, K.T., Huh, C.D., Hong, K.-S.: Command shaping control for limiting the transient sway angle of crane systems. Int. J. Control Autom. Syst. 1(1), 43–53 (2003)

    Google Scholar 

  27. Blackburn, D., Singhose, W., Kitchen, J., Patrangenaru, P., Lawrence, J., Kamoi, T., Taura, A.: Command shaping for nonlinear crane dynamics. J. Vib. Control 16(4), 477–501 (2010)

    Article  MATH  Google Scholar 

  28. Daqaq, M.F., Masoud, Z.N.: Nonlinear input-shaping controller for quay-side container cranes. Nonlinear Dyn. 45(1–2), 149–170 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bhatta, D.D.: Computation of added mass and damping coefficients due to a heaving cylinder. J. Appl. Math. Comput. 23(1–2), 127–140 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Troesch, A.W., Kim, S.K.: Hydrodynamic forces acting on cylinders oscillating at small amplitudes. J. Fluids Struct. 5(1), 113–126 (1991)

    Article  Google Scholar 

  31. Rahman, M., Bhatta, D.D.: Evaluation of added mass and damping coefficient of an oscillating circular cylinder. Appl. Math. Model. 17(2), 70–79 (1993)

    Article  MATH  Google Scholar 

  32. McLain, T.W., Rock, S.M.: Development and experimental validation of an underwater manipulator hydrodynamic model. Int. J. Robot. Res. 17(7), 748–759 (1998)

    Article  Google Scholar 

  33. Wang, L., Dai, H.L., Han, Y.Y.: Cross-flow-induced instability and nonlinear dynamics of cylinder arrays with consideration of initial axial load. Nonlinear Dyn. 67(2), 1043–1051 (2012)

    Article  MathSciNet  Google Scholar 

  34. Lin, C.-C., Chen, R.-R., Li, T.-L.: Experimental determination of the hydrodynamic coefficients of an underwater manipulator. J. Robot. Syst. 16(6), 329–338 (1999)

    Article  Google Scholar 

  35. Munson, B.R., Young, D.F., Okiishi, T.H.: Fundamentals of Fluid Mechanics. Wiley, New York (2002)

    Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Advanced Technology Center (ATC) Program funded by the Korean Ministry of Trade, Industry & Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keum -Shik Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 686 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, U.H., Hong, K.S. Input shaping control of a nuclear power plant’s fuel transport system. Nonlinear Dyn 77, 1737–1748 (2014). https://doi.org/10.1007/s11071-014-1414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1414-1

Keywords

Navigation