Skip to main content
Log in

Linear state representations for identification of bilinear discrete-time models by interaction matrices

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Bilinear systems can be viewed as a bridge between linear and nonlinear systems, providing a promising approach to handle various nonlinear identification and control problems. This paper provides a formal justification for the extension of interaction matrices to bilinear systems and uses them to express the bilinear state as a linear function of input–output data. Multiple representations of this kind are derived, making it possible to develop an intersection subspace algorithm for the identification of discrete-time bilinear models. The technique first recovers the bilinear state by intersecting two vector spaces that are defined solely in terms of input–output data. The new input–output-to-state relationships are also used to extend the equivalent linear model method for bilinear system identification. Among the benefits of the proposed approach, it does not require data from multiple experiments, and it does not impose specific restrictions on the form of input excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bruni, C., Di Pillo, G., Koch, G.: Bilinear systems: an appealing class of “nearly linear” systems in theory and applications. IEEE Trans. Autom. Control AC–19(4), 334–348 (1974)

    Article  Google Scholar 

  2. Mohler, R.R.: Nonlinear Systems. Applications to Bilinear Control II. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  3. Elliott, D.L.: Bilinear systems. In: Webster, J. (ed.) Encyclopedia of Electrical Engineering, II. Wiley, New York (1999)

    Google Scholar 

  4. Lo, J.T.-H.: Global bilinearization of systems with control appearing linearly. SIAM J. Control 13(4), 879–885 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Svoronos, S., Stephanopoulos, G., Rutherford, A.: Bilinear approximation of general non-linear dynamic systems with linear inputs. Int. J. Control 31(1), 109–126 (1980)

    Article  MATH  Google Scholar 

  6. Lee, C.-H., Juang, J.-N.: Nonlinear system identification—a continuous-time bilinear state space approach. Adv. Astron. Sci. 139, 421–444 (2011)

    Google Scholar 

  7. Kowalski, K., Steeb, W.-H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, Singapore (1991)

    Book  MATH  Google Scholar 

  8. Minisini, J., Rauh, A., Hofer, E.P.: Carleman linearization for approximate solutions of nonlinear control problems: Part 1—theory, advances in mechanics, dynamics and control. In: Proceedings of the 14th International Workshop on Dynamics and Controls, Moscow-Zvenigorod, Russia, 2007

  9. Rauh, A., Minisini, J., Hofer, E.P.: Carleman linearization for approximate solutions of nonlinear control problems: part 2—applications, advances in mechanics, dynamics and control. In: Proceedings of the 14th International Workshop on Dynamics and Controls, Moscow-Zvenigorod, Russia, 2007

  10. Phan, M.Q., Celik, H.: A superspace method for discrete-time bilinear model identification by interaction matrices. Adv. Astron. Sci. 139, 445–464 (2011)

    Google Scholar 

  11. Hizir Berk, N., Phan, M.Q., Betti, R., Longman, R.W.: Identification of discrete-time bilinear systems through equivalent linear models. Nonlinear Dyn. 69(4), 2065–2078 (2012)

    Article  Google Scholar 

  12. Favoreel, W., De Moor, B., Van Overschee, P.: Subspace identification of bilinear systems subject to white inputs. IEEE Trans. Autom. Control 44(6), 1157–1165 (1999)

    Article  MATH  Google Scholar 

  13. Phan, M.Q., Shi, Y., Betti, R., Longman, R.W.: Discrete-time bilinear representation of continuous-time bilinear state-space models. Adv. Astron. Sci. 143, 571–589 (2012)

    Google Scholar 

  14. Juang, J.-N.: Continuous-time bilinear system identification. Nonlinear Dyn. 39(1–2), 79–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Juang, J.-N.: Generalized bilinear system identification. J. Astron. Sci. 57(1/2), 261–273 (2009)

    MathSciNet  Google Scholar 

  16. Juang, J.-N.: Generalized bilinear system identification with coupling force variables. In: Bock, H.G., Hoang, X.P., Rannacher, R., Schloder, J.P. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 169–182. Springer, Berlin (2012)

  17. Juang, J.-N., Lee, C.-H.: Continuous-time bilinear system identification using single experiment with multiple pulses. Nonlinear Dyn. 69(3), 1009–1021 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vicario, F., Phan, M.Q., Betti, R., Longman, R.W.: Linear state representations for identification of bilinear discrete-time models by interaction matrices. Adv. Astron. Sci. 148, 2039–2058 (2013)

    Google Scholar 

  19. Celik, H., Phan, M.Q.: Identification of input-output maps for bilinear discrete-time state-space models. Adv. Astron. Sci. 142, 393–412 (2012)

    Google Scholar 

  20. Van Overschee, P., Moor, B.: Subspace Identification for Linear Systems: Theory, Implementation, Applications. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  21. De Moor, B., Moonen, M., Vandenberghe, L., Vandewalle, J.: The application of the canonical correlation concept to the identification of linear state space models. Anal. Optim. Syst. 111, 1103–1114 (1988)

    Article  Google Scholar 

  22. Phan, M.Q.: Interaction matrices in system identification and control. In: Proceedings of the 15th Yale Workshop on Adaptive and Learning Systems, 2011

  23. Phan, M.Q., Juang, J.-N., Longman, R.W.: Identification of linear multivariable systems by identification of observers with assigned real eigenvalues. J. Astron. Sci. 40(2), 261–279 (1992)

    MathSciNet  Google Scholar 

  24. Phan, M.Q., Horta, L.G., Juang, J.-N., Longman, R.W.: Linear system identification via an asymptotically stable observer. J. Optim. Theory Appl. 79(1), 59–86 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Juang, J.-N., Phan, M.Q., Horta, L.G., Longman, R.W.: Identification of observer/Kalman filter Markov parameters: theory and experiments. J. Guidance Control Dyn. 16(2), 320–329 (1993)

    Article  MATH  Google Scholar 

  26. Bouazza, K.E., Boutayeb, M., Darouach, M.: State and output feedback stabilization of a class of discrete-time nonlinear systems. In: Proceedings of the 2004 American Control Conference, vol. 4, pp. 3023–3028 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Vicario.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicario, F., Phan, M.Q., Betti, R. et al. Linear state representations for identification of bilinear discrete-time models by interaction matrices. Nonlinear Dyn 77, 1561–1576 (2014). https://doi.org/10.1007/s11071-014-1399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1399-9

Keywords

Navigation