Skip to main content
Log in

Hopf bifurcation analysis of asymmetrical rotating shafts

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Hopf and double Hopf bifurcations analysis of asymmetrical rotating shafts with stretching nonlinearity are investigated. The shaft is simply supported and is composed of viscoelastic material. The rotary inertia and gyroscopic effect are considered, but, shear deformation is neglected. To consider the viscoelastic behavior of the shaft, the Kelvin–Voigt model is used. Hopf bifurcations occur due to instability caused by internal damping. To analyze the dynamics of the system in the vicinity of Hopf bifurcations, the center manifold theory is utilized. The standard normal forms of Hopf bifurcations for symmetrical and asymmetrical shafts are obtained. It is shown that the symmetrical shafts have double zero eigenvalues in the absence of external damping, but asymmetrical shafts do not have. The asymmetrical shaft in the absence of external damping has a saddle point, therefore the system is unstable. Also, for symmetrical and asymmetrical shafts, in the presence of external damping at the critical speeds, supercritical Hopf bifurcations occur. The amplitude of periodic solution due to supercritical Hopf bifurcations for symmetrical and asymmetrical shafts for the higher modes would be different, due to shaft asymmetry. Consequently, the effect of shaft asymmetry in the higher modes is considerable. Also, the amplitude of periodic solutions for symmetrical shafts with rotary inertia effect is higher than those of without one. In addition, the dynamic behavior of the system in the vicinity of double Hopf bifurcation is investigated. It is seen that in this case depending on the damping and rotational speed, the sink, source, or saddle equilibrium points occur in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Vatta, F., Vigliani, A.: Internal damping in rotating shafts. Mech. Mach. Theory. 43(11), 1376–1384 (2008)

    Google Scholar 

  2. Khadem, S.E., Shahgholi, M., Hosseini, S.A.A.: Two-mode combination resonances of an in-extensional rotating shaft with large amplitude. Nonlinear Dyn. 65(3), 217–233 (2011). doi:10.1007/s11071-010-9884-2

    Article  MATH  MathSciNet  Google Scholar 

  3. Lewis, D.M.: Stability of whirling shafts with internal and external damping. Int. J. Non-Linear Mech. 8(2), 155–160 (1973)

    Article  MATH  Google Scholar 

  4. Genin, J., Maybee, J.S.: The role of material damping in the stability of rotating systems. J. Sound Vib. 21(4), 399–404 (1972)

    Article  MATH  Google Scholar 

  5. Dasgupta, S.S., Samantaray, A.K., Bhattacharyya, R.: Stability of an internally damped non-ideal flexible spinning shaft. Int. J. Non-Linear Mech. 45(3), 286–293 (2010)

    Article  Google Scholar 

  6. Avramov, K., Borysiuk, O.: Nonlinear dynamics of one disk asymmetrical rotor supported by two journal bearings. Nonlinear Dyn. 67, 1201–1219 (2012). doi:10.1007/s11071-011-0063-x

    Article  MATH  MathSciNet  Google Scholar 

  7. Chouksey, M., Dutt, J.K., Modak, S.V.: Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mech. Mach. Theory 48, 81–93 (2012)

    Article  Google Scholar 

  8. Xu, X., Wiercigroch, M.: Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dyn. 47(1), 311–320 (2007). doi:10.1007/s11071-006-9074-4

    MATH  MathSciNet  Google Scholar 

  9. Ganesan, R.: Effects of bearing and shaft asymmetries on the instability of rotors operating at near-critical speeds. Mech. Mach. Theory 35(5), 737–752 (2000)

    Article  MATH  Google Scholar 

  10. Genin, J., Maybee, J.S.: Whirling motion of a viscoelastic continuous shaft. Int. J. Eng. Sci. 8(8), 671–686 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Samantaray, A.: Steady-state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Nonlinear Dyn. 56(4), 443–451 (2009). doi:10.1007/s11071-008-9413-8

    Article  MATH  Google Scholar 

  12. Quinn, D.: Resonant dynamics in a rotordynamic system with nonlinear inertial coupling and shaft anisotropy. Nonlinear Dyn. 57(4), 623–633 (2009). doi:10.1007/s11071-009-9502-3

    Article  MATH  MathSciNet  Google Scholar 

  13. Arora, H.L., Arora, K.L.: On the asymptotic stability of the solution of a linear viscoelastic continuous shaft. Int. J. Eng. Sci. 13(11), 905–913 (1975)

    Article  MATH  Google Scholar 

  14. Ikeda, T., Murakami, S.: Dynamic response and stability of a rotating asymmetric shaft mounted on a flexible base. Nonlinear Dyn. 20(1), 1–19 (1999). doi:10.1023/a:1008302203981

    Article  MATH  Google Scholar 

  15. Shaw, J., Shaw, S.W.: Non-linear resonance of an unbalanced rotating shaft with internal damping. J. Sound Vib. 147(3), 435–451 (1991)

    Article  Google Scholar 

  16. Shahgholi, M., Khadem, S.: Stability analysis of a nonlinear rotating asymmetrical shaft near the resonances. Nonlinear Dyn. 70, 1311–1325 (2012). doi:10.1007/s11071-012-0535-7

    Article  MathSciNet  Google Scholar 

  17. Chang, C.O., Cheng, J.W.: Non-linear dynamics and instability of a rotating shaft–disk system. J. Sound Vib. 160(3), 443–545 (1993)

    Article  Google Scholar 

  18. Yamamoto, T., Ishida, Y.: Linear and Nonlinear Rotordynamics. Wiley, New York (2001)

    Google Scholar 

  19. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (2004)

    Google Scholar 

  20. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2001)

  21. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Esmaeilzadeh Khadem.

Appendix

Appendix

$$\begin{aligned}&\Theta _1 =\frac{\left( c+(1+\Delta )\mu \omega _k^2 \right) }{(I_q +\omega _k \Delta _I )} ,\quad \Theta _2 =\frac{\omega _k^2 (1+\Delta )}{(I_q +\omega _k \Delta _I )} ,\\&\Theta _3 =\frac{(I_q -\omega _k I_p -\omega _k \Delta _I )}{(I_q +\omega _k \Delta _I )} \\&\Theta _4 =\frac{(2I_q -\omega _k I_p )}{(I_q +\omega _k \Delta _I )} ,\quad \Theta _5 =\frac{c}{(I_q +\omega _k \Delta _I )} ,\\&\Theta _6 =\frac{\omega _k \alpha }{(I_q +\omega _k \Delta _I )} , \\&\Theta _7 =\frac{\left( c+(1-\Delta )\mu \omega _k^2 \right) }{(I_q -\omega _k \Delta _I )}\Theta _8 =\frac{\omega _k^2 (1-\Delta )}{(I_q -\omega _k \Delta _I )} ,\\&\Theta _9 =\frac{(I_q -\omega _k I_p +\omega _k \Delta _I )}{(I_q -\omega _k \Delta _I )} \\&\Theta _{10} =\frac{(2I_q -\omega _k I_p )}{(I_q -\omega _k \Delta _I )} ,\quad \Theta _{11} =\frac{c}{(I_q -\omega _k \Delta _I )} ,\\&\Theta _{12} =\frac{\omega _k \alpha }{(I_q -\omega _k \Delta _I )} \\&C_1 =-\omega (\sigma )d_{30} -2c_{30} \delta (\sigma )-\omega (\sigma )c_{21} +a_1 \\&C_2 =-d_{21} \omega (\sigma )-2c_{21} \delta (\sigma )-2c_{12} \omega (\sigma )\\&\quad +3c_{30} \omega (\sigma )+b_1 \\&C_3 =-d_{12} \omega (\sigma )-3c_{03} \omega (\sigma )+2c_{21} \omega (\sigma )\\&\quad \quad -2c_{12} \delta (\sigma )+a_1 \\&C_4 =-d_{03} \omega (\sigma )+c_{12} \omega (\sigma )-2c_{03} \delta (\sigma )+b_1 \\&C_5 =c_{30} \omega (\sigma )-2d_{30} \delta (\sigma )-\omega (\sigma )d_{21} -b_2 \\&C_6 =c_{21} \omega (\sigma )-2d_{21} \delta (\sigma )-2d_{12} \omega (\sigma )\\&+3d_{30} \omega (\sigma )+a_2 \\&C_7 =c_{12} \omega (\sigma )-3d_{03} \omega (\sigma )\\&\quad +2d_{21} \omega (\sigma )-2d_{12} \delta (\sigma )-b_2 \\&C_8 =c_{03} \omega (\sigma )+d_{12} \omega (\sigma )-2d_{03} \delta (\sigma )+a_2 \\&\Lambda _1 =\frac{-\Theta _{6,n} \omega _n \sigma _1 }{(\sigma _2 -\omega _{\mathrm{cr},n} )^{2}+\sigma _1^2 },\quad \hat{{\Lambda }}_1 =\frac{-\Theta _{6,n+1} \omega _{n+1} \sigma _3 }{(\sigma _4 -\omega _{\mathrm{cr},n+1} )^{2}+\sigma _3^2 } \\&\xi _1 =\frac{-\Theta _{6,n} \omega _{n+1} \sigma _1 }{(\sigma _2 -\omega _{\mathrm{cr},n} )^{2}+\sigma _1^2 },\quad \hat{{\xi }}_1 =\frac{-\Theta _{6,n+1} \omega _n \sigma _3 }{(\sigma _4 -\omega _{\mathrm{cr},n+1} )^{2}+\sigma _3^2 } \\&\Gamma _1 =\frac{\Theta _{12,n} \omega _n (\sigma _2 -\omega _{\mathrm{cr},n} )}{(\sigma _2 -\omega _{\mathrm{cr},n} )^{2}+\sigma _1^2 },\quad \hat{{\Gamma }}_1 =\frac{\Theta _{12,n+1} \omega _{n+1} (\sigma _4 -\omega _{\mathrm{cr},n+1} )}{(\sigma _4 -\omega _{\mathrm{cr},n+1} )^{2}+\sigma _3^2 } \\&\eta _1 \!=\!\frac{\Theta _{12,n} \omega _{n+1} (\sigma _2 -\omega _{\mathrm{cr},n} )}{(\sigma _2 -\omega _{\mathrm{cr},n} )^{2}+\sigma _1^2 },\quad \hat{{\eta }}_1 =\frac{\Theta _{12,n+1} \omega _n (\sigma _4 -\omega _{\mathrm{cr},n+1} )}{(\sigma _4 -\omega _{\mathrm{cr},n+1} )^{2}+\sigma _3^2 } \\&\Lambda _2 =\frac{-\Theta _{12,n} \omega _n \sigma _1 }{(\sigma _2 -\omega _{\mathrm{cr},n} )^{2}+\sigma _1^2 },\quad \hat{{\Lambda }}_2 =\frac{-\Theta _{12,n+1} \omega _{n+1} \sigma _3 }{(\sigma _4 -\omega _{\mathrm{cr},n+1} )^{2}+\sigma _3^2 } \\&\xi _2 =\frac{-\Theta _{12,n} \omega _{n+1} \sigma _1 }{(\sigma _2 -\omega _{\mathrm{cr},n} )^{2}+\sigma _1^2 },\quad \hat{{\xi }}_2 =\frac{-\Theta _{12,n+1} \omega _n \sigma _3 }{(\sigma _4 -\omega _{\mathrm{cr},n+1} )^{2}+\sigma _3^2 } \\&\Gamma _2 =\frac{\Theta _{6,n} \omega _n (\sigma _2 -\omega _{\mathrm{cr},n} )}{(\sigma _2 -\omega _{\mathrm{cr},n} )^{2}+\sigma _1^2 },\quad \hat{{\Gamma }}_2 =\frac{\Theta _{6,n+1} \omega _{n+1} (\sigma _4 -\omega _{\mathrm{cr},n+1} )}{(\sigma _4 -\omega _{\mathrm{cr},n+1} )^{2}+\sigma _3^2 } \\&\eta _2 =\frac{\Theta _{6,n} \omega _{n+1} (\sigma _2 -\omega _{\mathrm{cr},n} )}{(\sigma _2 -\omega _{\mathrm{cr},n} )^{2}+\sigma _1^2 },\quad \hat{{\eta }}_2 =\frac{\Theta _{6,n+1} \omega _n (\sigma _4 -\omega _{\mathrm{cr},n+1} )}{(\sigma _4 -\omega _{\mathrm{cr},n+1} )^{2}+\sigma _3^2 } \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahgholi, M., Khadem, S.E. Hopf bifurcation analysis of asymmetrical rotating shafts. Nonlinear Dyn 77, 1141–1155 (2014). https://doi.org/10.1007/s11071-014-1367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1367-4

Keywords

Navigation