Skip to main content
Log in

Basin boundaries with nested structure in a shallow arch oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The basin boundaries with nested structure are investigated in a shallow arch oscillator. Basin organization is complex yet systematic and it is governed by the ordering of heteroclinic and homoclinic connections of regular saddles. The Wada properties are verified for eight basin boundaries, where five basin boundaries are totally Wada basin boundaries for a given set of parameters. The organization of nested basin boundaries is governed by the order of saddle connections. The term “Wada number” is introduced to describe the nested structure. The partially Wada basin boundaries are investigated by the erodent cells and the remnant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mcdonald, S.W., Grebogi, C., Ott, E., Yorke, J.A.: Fractal basin boundaries. Physica D 17, 125–153 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Li, G.X., Moon, F.C.: Fractal basin boundaries in a two-degree-of-freedom nonlinear system. Nonlinear Dyn. 1, 209–219 (1990)

    Article  Google Scholar 

  3. Kennedy, J., Yorke, J.A.: Basin of Wada. Physica D 51, 213–225 (1991)

  4. Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009)

    Article  Google Scholar 

  5. Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and unpredictability in Hamiltonian and dissipative systems. Mod. Phys. Lett. B 24, 4171–4175 (2003)

    Article  Google Scholar 

  6. Zhang, Y., Luo, G.: Unpredictability of the Wada property in the parameter plane. Phys. Lett. A 376, 3060–3066 (2012)

    Article  MathSciNet  Google Scholar 

  7. Nusse, H.E., Ott, E., Yorke, J.A.: Saddle-node bifurcations on fractal basin boundaries. Phys. Rev. Lett. 75, 2482–2485 (1995)

    Article  Google Scholar 

  8. Aguirre, J., Sanjuán, F.: Unpredictable behavior in the Duffing oscillator: Wada basins. Physica D 171, 41–51 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hong, L., Xu, J.X.: Chaotic saddles in Wada basin boundaries and their bifurcations by generalized cell mapping digraph (GCMD) method. Nonlinear Dyn. 32, 371–385 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang, Y.: Switching-induced Wada basin boundaries in the Hénon map. Nonlinear Dyn. 73, 2221–2229 (2013)

    Article  MATH  Google Scholar 

  11. Zhang, Y., Zhang, H.: Wada basin boundaries in switched systems, Nonlinear Dyn. 10.1007/s11071-013-1126-y

  12. Viana, R.L., Da Silva, E.C., Kroetz, T., Caldas, I.L., Roberto, M., Sanjuán, M.A.F.: Fractal structures in nonlinear plasma physics. Phil. Trans. R. Soc. A 369, 371–395 (2011)

    Article  MATH  Google Scholar 

  13. Zhang, Y.: Strange nonchaotic attractors with Wada basins. Physica D 259, 26–36 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Seoane, J.M., Sanjuán, M.A.F.: New developments in classical chaotic scattering. Rep. Prog. Phys. 76, 016001 (2013)

    Article  Google Scholar 

  15. Thompson, J.M.T., Hunt, G.W.: A general Theory of Elastic Stability. Wiley, London (1973)

    MATH  Google Scholar 

  16. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74, 046218 (2006)

    Google Scholar 

  17. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. Int. J. Nonlinear Mech. 43, 462–473 (2008)

    Article  Google Scholar 

  18. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Phil. Trans. R. Soc. A 366, 635–652 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feudel, U., Grebogi, C., Hunt, B.R., Yorke, J.A.: Map with more than 100 coexisting low-period periodic attractors. Phys. Rev. E 54, 71–81 (1996)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Y., Luo, G., Cao, Q., Lin, M.: Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors. Int. J. Non-linear Mech. 58, 151–161 (2014)

    Article  Google Scholar 

  21. Nusse, H.E., Yorke, A.: Wada basin boundaries and basin cells. Physica D 90, 242–261 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  23. Eschenazi, E., Solari, H.G., Gilmore, R.: Basins of attraction in driven dynamical systems. Phys. Rev. A 39, 2609–2627 (1989)

    Article  MathSciNet  Google Scholar 

  24. Thompson, J.M.T., Soliman, M.S.: Fractal control boundaries of driven oscillators and their relevance to safe engineering design. Proc. R. Soc. Lond. A 428, 1–13 (1990)

    Article  MATH  Google Scholar 

  25. Zhang, Y., Luo, G.: Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map. Phys. Lett. A 377, 1274–1281 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are deeply indebted to the anonymous reviewers for their careful reading of the manuscript, as well as for their fruitful comments and advice which led to an improvement of this paper. This work was supported by the National Natural Science Foundation of China (No. 11002092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongxiang Zhang or Liang Fu Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Lu, L.F. Basin boundaries with nested structure in a shallow arch oscillator. Nonlinear Dyn 77, 1121–1132 (2014). https://doi.org/10.1007/s11071-014-1364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1364-7

Keywords

Navigation