Skip to main content
Log in

Non-linear fractional field equations: weak non-linearity at power-law non-locality

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fractional non-relativistic field equations with the derivatives of non-integer order are considered. A connection of these equations with microscopic (lattice) models is discussed. The considered equations contain non-linear terms and fractional Laplacian in the Riesz form. Using the background field method and the mean field method, we obtain corrections to linear solution and equilibrium solution caused by the weak non-linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross, B.: A brief history and exposition of the fundamental theory of fractional calculus. In: Ross, B. (ed.) Fractional Calculus and Its Applications. Lecture Notes in Mathematics, pp. 1–36. Springer, Berlin (1975)

    Chapter  Google Scholar 

  2. Tenreiro Machado, J.A., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Tenreiro Machado, J.A., Galhano, A., Trujillo, J.J.: On development of fractional calculus during the last fifty years. Scientometrics 98(1), 577–582 (2013). doi:10.1007/s11192-013-1032-6

    Article  Google Scholar 

  4. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  6. Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71, 653–662 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Valerio, D., Trujillo, J.J., Rivero, M., Tenreiro Machado, J.A., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. 222, 1827–1846 (2013)

    Google Scholar 

  8. Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 18, 2945–2948 (2013)

    Article  MathSciNet  Google Scholar 

  9. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  10. Carpinteri, A., Mainardi, F. (eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    MATH  Google Scholar 

  11. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  12. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  15. Luo, A.C.J., Afraimovich, V.S. (eds.): Long-Range Interaction, Stochasticity and Fractional Dynamics. Springer, Berlin (2010)

    Google Scholar 

  16. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  Google Scholar 

  17. Klafter, J., Lim, S.C., Metzler, R. (eds.): Fractional Dynamics. Recent Advances. World Scientific, Singapore (2011)

    Google Scholar 

  18. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)

    Google Scholar 

  19. Tarasov, V.E.: Review of some promising fractional physical models. Int. J. Mod. Phys. B 27, 1330005 (2013)

    Article  MathSciNet  Google Scholar 

  20. Pierantozzi, T., Vazquez, L.: An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like. J. Math. Phys. 46, 113512 (2005)

    Article  MathSciNet  Google Scholar 

  21. Baleanu, D., Muslih, S.I.: Lagrangian formulation of classical fields within Riemann–Liouville fractional derivatives. Phys. Scr. 72, 119–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Herrmann, R.: Gauge invariance in fractional field theories. Phys. Lett. A. 372, 5515–5522 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lim, S.C.: Fractional derivative quantum fields at positive temperature. Physica A 363, 269–281 (2006)

    Article  MathSciNet  Google Scholar 

  24. Patashinskii, A.Z., Pokrovskii, V.L.: Fluctuation Theory of Phase Transitions. Pergamon, London (1979)

    Google Scholar 

  25. Ma, S.K.: Modern Theory of Critical Phenomena. W.A. Benjamin, London (1976)

    Google Scholar 

  26. Gyarmati, I.: Non-equilibrium Thermodynamics: Field Theory and Variational Principles. Springer, Berlin (1970)

    Book  Google Scholar 

  27. Sedov, L.I.: A Course in Continuum Mechanics, Vol 1. Basic Equations and Analytical Techniques. Wolters-Noordhoff, Groningen (1971)

    Google Scholar 

  28. Sedov, L.I.: Foundations of the Non-linear mechanics of Continua. Pergamon, Oxford (1966)

    MATH  Google Scholar 

  29. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Book  Google Scholar 

  30. Leigh, D.C.: Nonlinear Continuum Mechanics: An Introduction to the Continuum Physics and Mathematical Theory of the Nonlinear Mechanical Behavior of Materials. McGraw-Hill, New York (1968)

    Google Scholar 

  31. Besson, J., Cailletaud, G., Chaboche, J.L., Forest, S., Bletry, M.: Solid Mechanics and Its Applications: Non-linear Mechanics of Materials. Springer, Dordrecht (2010). in French

    Book  Google Scholar 

  32. Rivlin, R.S. (ed.): Non-linear Continuum Theories in Mechanics and Physics and Their Applications. Springer, Berlin (2010)

    Google Scholar 

  33. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  34. Flugge, S. (ed.): Encyclopedia of Physics. Vol. III/3. The Non-linear Field Theories of Mechanics. Springer, Berlin (1965)

    Google Scholar 

  35. Milovanov, A.V., Rasmussen, J.J.: Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337, 7580 (2005)

    Article  Google Scholar 

  36. Tarasov, V.E., Zaslavsky, G.M.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005)

    Article  Google Scholar 

  37. Tarasov, V.E.: Psi-series solution of fractional Ginzburg–Landau equation. J. Phys. A 39, 8395–8407 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of coupled oscillators with long-range interaction. Chaos 16, 023110 (2006)

    Article  MathSciNet  Google Scholar 

  39. Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11, 885–898 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zaslavsky, G.M., Edelman, M., Tarasov, V.E.: Dynamics of the chain of oscillators with long-range interaction: from synchronization to chaos. Chaos 17, 043124 (2007)

    Article  MathSciNet  Google Scholar 

  41. Korabel, N., Zaslavsky, G.M., Tarasov, V.E.: Coupled oscillators with power-law interaction and their fractional dynamics analogues. Commun. Nonlinear Sci. Numer. Simul. 12, 1405–1417 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tarasov, V.E.: Continuous limit of discrete systems with long-range interaction. J. Phys. A 39, 14895–14910 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tarasov, V.E.: Map of discrete system into continuous. J. Math. Phys. 47, 092901 (2006)

    Article  MathSciNet  Google Scholar 

  44. Laskin, N., Zaslavsky, G.M.: Nonlinear fractional dynamics on a lattice with long-range interactions. Physica A 368, 38–54 (2006)

    Google Scholar 

  45. Tarasov, V.E., Trujillo, J.J.: Fractional power-law spatial dispersion in electrodynamics. Ann. Phys. 334, 1–23 (2013)

    Article  MathSciNet  Google Scholar 

  46. Landau, L.L., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Pergamon, Oxford (1986)

  47. Tarasov, V.E.: Lattice model with power-law spatial dispersion for fractional elasticity. Cent. Eur. J. Phys. 11, 1580–1588 (2013)

    Article  Google Scholar 

  48. Tarasov, V.E.: Lattice model of fractional gradient and integral elasticity: long-range interaction of Grünwald–Letnikov–Riesz type. Mech. Mater. 70, 106–114 (2014)

    Article  Google Scholar 

  49. Alvarez-Gaume, L., Freedman, D.Z., Mukhi, S.: The background field method and the ultraviolet structure of the supersymmetric nonlinear \(\sigma \)-model. Ann. Phys. 134, 85–109 (1981)

    Article  Google Scholar 

  50. Jack, J., Osborn, H.: Background field calculations in curved space-time. (I) General formalism and application to scalar fields. Nucl. Phys. B 234, 331–364 (1984)

    Article  Google Scholar 

  51. Howe, P.S., Papadopoulos, G., Stelle, K.S.: The background field method and the non-linear \(\sigma \)-model. Nucl. Phys. B. 296, 26–48 (1988)

    Article  MathSciNet  Google Scholar 

  52. Parisi, G.: Statistical Field Theory. Addison-Wesley, New York (1988)

    MATH  Google Scholar 

  53. Tarasov, V.E.: General lattice model of gradient elasticity. Mod. Phys. Lett. B 28, 1450054 (2014)

    Article  Google Scholar 

  54. Tarasov, V.E.: Fractional diffusion equations for open quantum systems. Nonlinear Dyn. 71, 663–670 (2013)

    Article  MathSciNet  Google Scholar 

  55. Riesz, M.: L’intégrale de Riemann–Liouville et le probléme de Cauchy. Acta Math. 81, 1–222 (1949). in French

    Article  MATH  MathSciNet  Google Scholar 

  56. Balachandran, K., Govindaraj, V., Rodriguez-Germa, L., Trujillo, J.J.: Controllability of nonlinear higher order fractional dynamical systems. Nonlinear Dyn. 71, 605–612 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  57. Baleanu, D., Muslih, S., Tas, K.: Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. 47, 103503 (2006)

    Article  MathSciNet  Google Scholar 

  58. Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A 39, 9797–9815 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  59. Baleanu, D.: Fractional Hamiltonian analysis of irregular systems. Signal Process. 86, 2632–2636 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author expresses his gratitude to the guest editors Professor Yong Zhou, Professor Clara Ionescu, Professor J. A. Tenreiro Machado for kind invitation to contribute to a special issue titled “Fractional Dynamics and Its Applications”, in the journal Nonlinear Dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily E. Tarasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasov, V.E. Non-linear fractional field equations: weak non-linearity at power-law non-locality. Nonlinear Dyn 80, 1665–1672 (2015). https://doi.org/10.1007/s11071-014-1342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1342-0

Keywords

Navigation