Skip to main content

Advertisement

Log in

Multi-objective transfer to libration-point orbits via the mixed low-thrust and invariant-manifold approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The multi-objective optimization of transfer trajectories from an orbit near Earth to a periodic libration-point orbit in the Sun–Earth system using the mixed low-thrust and invariant-manifold approach is investigated in this paper. A two-objective optimization model is proposed based on the mixed low-thrust and invariant-manifold approach. The circular restricted three-body model (CRTBP) is utilized to represent the motion of a spacecraft in the gravitational field of the Sun and Earth. The transfer trajectory is broken down into several segments; both low-thrust propulsion and stable manifolds are utilized based on the CRTBP in different segments. The fuel cost, which is generated only by the low-thrust trajectory for transferring the spacecraft from an orbit near Earth to a stable manifold, is minimized. The total flight time, which includes the time during which the spacecraft is controlled by the low-thrust trajectory and the time during which the spacecraft is moving on the stable manifold, is also minimized. Using the nondominated sorting genetic algorithm for the resulting multi-objective optimization problem, highly promising Pareto-optimal solutions for the transfer of the spacecraft are found. Via numerical simulations, it is shown that tradeoffs between time of flight and fuel cost can be quickly evaluated using this approach. Furthermore, for the same time of flight, transfer trajectories based on the mixed-transfer method can save a larger amount of fuel than the low-thrust method alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gómez, G., Lo, M.W., Masdemont, J.J.: Libration point orbits and applications. World Scientific Publishing, Gerona (2003)

    Google Scholar 

  2. Peng, H.J., Yang, C.F., Li, Y.P., Zhang, S., Chen, B.S.: Surrogate-based parameter optimization and optimal control for optimal trajectory of Halo orbit rendezvous. Aerosp. Sci. Technol. 26(1), 176–184 (2013)

    Article  Google Scholar 

  3. Peng, H.J., Zhao, J., Wu, Z.G., Zhong, W.X.: Optimal periodic controller for formation flying on libration point orbits. Acta. Astronaut. 69(7–8), 537–550 (2011)

    Article  Google Scholar 

  4. Davis, K.E., Anderson, R.L., Scheeres, D.J., Born, G.H.: The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest. Mech. Dyn. Astron. 107(4), 471–485 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Parker, J.S., Davis, K.E., Born, G.H.: Chaining periodic three-body orbits in the Earth–Moon system. Acta. Astronaut. 67(5–6), 623–638 (2010)

    Article  Google Scholar 

  6. Demeyer, J., Gurfil, P.: Transfer to distant retrograde orbits using manifold theory. J. Guid. Control. Dyn. 30(5), 1261–1267 (2007)

    Article  Google Scholar 

  7. Farquhar, R.W., Muhonen, D.P., Newman, C.R., et al.: Trajectories and orbital maneuvers for the first Libration-point satellite. J. Guid. Control. Dyn. 3(6), 549–554 (1980)

    Article  Google Scholar 

  8. Hiday-Johnston, L.A., Howell, K.C.: Transfers between libration-point orbits in the elliptic restricted problem. Celest. Mech. Dyn. Astron. 58(4), 317–337 (1994)

    Article  Google Scholar 

  9. Peng, H.J., Gao, Q., Wu, Z.G., et al.: Optimal guidance based on receding horizon control for low-thrust transfer to libration point orbits. Adv. Space. Res 51(11), 2093–2111 (2013)

    Article  Google Scholar 

  10. Ozimek, M.T., Howell, K.C.: Low-thrust transfers in the Earth–Moon system, including applications to libration point orbits. J. Guid. Control. Dyn. 33(2), 533–549 (2010)

    Article  Google Scholar 

  11. Gómez, G., Marcote, M., Masdemont, J.J.: Trajectory correction manoeuvres in the transfer to libration point orbits. Acta. Astronaut. 56(7), 652–669 (2005)

    Article  Google Scholar 

  12. Xu, M., Xu, S.J.: Trajectory and correction maneuver during the transfer from Earth to Halo orbit. Chin. J. Aeronaut. 21(3), 200–206 (2008)

    Article  Google Scholar 

  13. Li, M.T., Zheng, J.H.: Impulsive lunar Halo transfers using the stable manifolds and lunar flybys. Acta. Astronaut. 66(9–10), 1481–1492 (2010)

    MathSciNet  Google Scholar 

  14. Liu, C.B., Hou, X.Y., Liu, L.: Transfer from the Earth to a Lissajous orbit around the collinear libration point by Lunar swing-by. Adv. Space. Res. 40(1), 76–82 (2007)

    Article  Google Scholar 

  15. Serban, R., Koon, W.S., Lo, M.W., et al.: Halo orbit mission correction maneuvers using optimal control. Automatica. 38(4), 571–583 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Howell, K.C., Barden, B., Lo, M.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45(2), 161–178 (1997)

    MathSciNet  Google Scholar 

  17. Moore, A., Ober-Blöbaum, S., Marsden, J.E.: Trajectory design combining invariant manifolds with discrete mechanics and optimal control. J. Guid. Control. Dyn. 35(5), 1507–1525 (2012)

    Google Scholar 

  18. Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Combined optimal low thrust and stable manifold trajectories to the Earth–Moon Halo orbits. AIP Conf. Proc. 886, 100–110 (2007)

    Article  MathSciNet  Google Scholar 

  19. Parker, J.S., Anderson, R.L.: Targeting low-energy transfers to low lunar orbit. Acta. Astronaut. 84, 1–14 (2013)

    Article  Google Scholar 

  20. Xu, M., Tan, T., Xu, S.J.: Research on the transfers to Halo orbits from the view of invariant manifolds. Sci. China-Phys. Mech. Astron. 55(4), 671–683 (2012)

    Article  Google Scholar 

  21. Assadian, N., Pourtakdoust, S.H.: Multiobjective genetic optimization of Earth–Moon trajectories in the restricted four-body problem. Adv. Space. Res. 45(3), 398–409 (2010)

    Article  Google Scholar 

  22. Zhang, L., Gao, H., Chen, Z., Sun, Q., Zhang, X.: Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method. Nonlinear Dyn. 72(1–2), 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  23. Chen, C.T., Pham, H.V.: Trajectory planning in parallel kinematic manipulators using a constrained multi-objective evolutionary algorithm. Nonlinear Dyn. 67(2), 1669–1681 (2012)

    Article  MathSciNet  Google Scholar 

  24. Dellnitz, M., Ober-Blöbaum, S., Post, M., Schütze, O., Thiere, B.: A multi-objective approach to the design of low thrust space trajectories using optimal control. Celest. Mech. Dyn. Astr. 105(1–3), 33–59 (2009)

    Article  MATH  Google Scholar 

  25. Coffee, T. M., Anderson, R. L., Lo, M. W.: Multiobjective optimization of low-energy trajectories using optimal control on dynamical channels (part I). AIAA/AAS Conf. Proc. AAS 11–129 (2011)

  26. Gómez, G., Koon, W.S., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571–1606 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control. Dyn. 21(2), 193–207 (1998)

    Article  MATH  Google Scholar 

  28. Conway, B.A.: A survey of methods available for the numerical optimization of continuous dynamic systems. J. Optimiz. Theory. App. 152(2), 271–306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hull, D.G.: Conversion of optimal control problems into parameter optimization problems. J. Guid. Control. Dyn. 20(1), 57–60 (1997)

    Article  MATH  Google Scholar 

  30. Biegler, L.T.: Nonlinear programming: concepts, algorithms, and applications to chemical processes. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Book  Google Scholar 

  31. Peng, H.J., Gao, Q., Wu, Z.G., et al.: Symplectic adaptive algorithm for solving nonlinear two-point boundary value problems in astrodynamics. Celest. Mech. Dyn. Astron. 110(4), 319–342 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Arnold, V.I.: Mathematical methods of classical mechanics. Springer, New York (1989)

    Book  Google Scholar 

  33. Kulkarni, J.E., Campbell, M.E., Dullerud, G.E.: Stabilization of spacecraft flight in Halo orbits: an H\(\infty \) approach. IEEE. Technol. Contr. Syst. Trans. 14(3), 572–578 (2006)

    Article  Google Scholar 

  34. Deb, K.: Multiobjective optimization using evolutionary algorithms. Wiley, New York (2001)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial supports of the National Science Foundation of China (11102031), the Fundamental Research Funds for the Central Universities (DUT13LK25), Program Funded by Liaoning Province Education Administration (L2013015) and the State Key Laboratory of Mechanics and Control of Mechanical Structures (MCMS-0114G02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H., Chen, B. & Wu, Z. Multi-objective transfer to libration-point orbits via the mixed low-thrust and invariant-manifold approach. Nonlinear Dyn 77, 321–338 (2014). https://doi.org/10.1007/s11071-014-1296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1296-2

Keywords

Navigation