Skip to main content
Log in

Generalized macroscopic traffic model with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The effect of delay or reaction time on traffic flow dynamics has been investigated widely in the literature using microscopic traffic models. Recent studies using second-order Payne-type models have shown analytically that, on a macroscopic scale, time delay does not contribute to whether traffic instabilities occur. This paper will attempt to show that it all depends on the (macroscopic) model used for the analysis that delay does have effect on traffic instabilities or not. To this end, we will formulate a generalized (linear) stability condition for a second-order macroscopic model with delay and investigate analytically the effect of such delay on traffic instabilities in some specific macroscopic models. It is found that the choice of the equilibrium speed function in a (second order) macroscopic model will determine how delay affects such (linear) stability condition

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A.: Analysis of optimal velocity model with explicit delay. Phys. Rev. E 58, 5429–5435 (1998)

    Article  Google Scholar 

  2. Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. F 2, 181–196 (2000)

    Article  Google Scholar 

  3. Daganzo, C.F.: The cell transmission model. Part II: Network traffic. Transp. Res. B 28, 279–293 (1994)

    Article  Google Scholar 

  4. Ge, H.X., Liu, Y.X., Cheng, R.J., Lo, S.M.: A modified coupled map car following model and its traffic congestion analysis. Commun. Nonlinear Sci. Numer. Simulat. 17, 4439–4445 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Helbing, D.: Gas-kinetic derivation of navier-stokes-like traffic equations. Phys. Rev. E 53, 2366–2381 (1996)

    Article  MathSciNet  Google Scholar 

  6. Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M.: MASTER: macroscopic traffic simulation based on a gas-kinetic non-local traffic model. Transp. Res. B 35(2), 183–211 (2002)

    Article  MathSciNet  Google Scholar 

  7. Helbing, D., Johansson, A.F.: On the controversy around Daganzos requiem for and Aw-Rascles resurrection of second-order traffic flow models. Eur. Phys. J. B 69, 549–562 (2009)

    Article  Google Scholar 

  8. Hoogendoorn, S.P., Bovy, P.H.L.: Multiclass macroscopic traffic flow modelling: a multilane generalization using gas-kinetic theory. In: Transportation and Traffic Theory, pp. 27–50 (1999)

  9. Hoogendoorn, S.P., Ossen, S., Schreuder, M.: Properties of a microscopic heterogeneous multi-anticipative traffic flow model. In: Transportation and Traffic Theory, pp. 583–606 (2007)

  10. Kesting, A., Treiber, M.: How reaction time, update time, and adaptation time influence the stability of traffic flow. Comput.-Aided Civil Infrastruct. Eng 23, 125–137 (2008)

    Article  Google Scholar 

  11. Kesting, A., Treiber, M., Helbing, D.: General lane changing model MOBIL for car following models. Transp. Res. Rec. 1, 86–94 (2007)

    Article  Google Scholar 

  12. Kesting, A., Treiber, M., Helbing, D.: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philos. Trans. R. Soc. A 368, 4585–4605 (2010)

    Article  MATH  Google Scholar 

  13. Li, Y., Sun, D.H., Liu, W.N., Zhang, M., Zhao, M., Liao, X., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li, Y., Zhu, H., Cen, M., Li, Y., Li, R., Sun, D.: On the stability analysis of microscopic traffic car-following model: a case study. Nonlinear Dyn. 74, 335–343 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lighthill, M.H., Whitham, G.B.: On kinematic waves 2: a theory of traffic flow on long, crowded roads. Proc. R. Soc. Lond. A 229, 317–345 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ngoduy, D.: Multiclass first order modelling of traffic networks using discontinuous flow-density relationships. Transportmetrica 6, 121–141 (2010)

    Article  Google Scholar 

  17. Ngoduy, D.: Effect of driver behaviors on the formation and dissipation of traffic flow instabilities. Nonlinear Dyn. 69, 969–975 (2012)

    Google Scholar 

  18. Ngoduy, D.: Application of gas-kinetic theory to modelling mixed traffic of manual andadaptive cruise control vehicles. Transportmetrica 8, 43–60 (2012)

    Google Scholar 

  19. Ngoduy, D.: Analytical studies on the instabilities of heterogeneous intelligent traffic flow. Commun. Nonlinear Sci. Numer. Simulat. 18, 2699–2706 (2013)

    Google Scholar 

  20. Ngoduy, D.: Instabilities of cooperative adaptive cruise control traffic flow: a macroscopic approach. Commun. Nonlinear Sci. Numer. Simulat. 18, 2838–2851 (2013)

    Google Scholar 

  21. Ngoduy, D.: Platoon based macroscopic model for intelligent traffic flow. Transp. B 1, 153–169 (2013)

    Google Scholar 

  22. Ngoduy, D., Hoogendoorn, S.P., Liu, R.: Continuum traffic flow modelling of cooperative traffic systems. Physica A 388, 2705–2716 (2009)

    Article  Google Scholar 

  23. Ngoduy, D., Tampere, C.M.J.: Macroscopic effects of reaction time on traffic flow characteristics. Phys. Scripta 80, 025802–025809 (2009)

    Article  Google Scholar 

  24. Ngoduy, D., Wilson, R.E.: Multi-anticipative nonlocal second order traffic model. Computer Aided Civil and Infrastructure Engineering. doi:10.1111/mice.12035 (2013)

  25. Orosz, G., Wilson, R.E., Stephan, G.: Traffic jams: dynamics and control. Philos. Trans. R. Soc. A 368, 4455–4479 (2010)

    Article  MATH  Google Scholar 

  26. Payne, H.J.: Models for freeway traffic control. Math. Models of Public Syst. 1, 51–61 (1971)

    Google Scholar 

  27. Peng, G., Nie, F., Cao, B., Liu, C.: A drivers memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  29. Tampere, C.M.J., Hoogendoorn, S.P., van Arem, B.: A behavioural approach to instability, stop and go waves, wide jams and capacity drop. In: Transportation and traffic theory, pp. 205–228 (2005)

  30. Tang, T.Q., Huang, H.J., Xu, G.: A new macro model with consideration of the traffic interruption probability. Physica A 387, 6845–6856 (2008)

    Article  Google Scholar 

  31. Tang, T.Q., Li, C., Huang, H., Shang, H.: A new fundamental diagram theory with the individual difference of the driver’s perception ability. Nonlinear Dyn. 67, 2255–2265 (2012)

    Article  Google Scholar 

  32. Tang, T.Q., Li, C.Y., Wu, Y., Huang, H.J.: Impact of the honk effect on the stability of traffic flow. Physica A 390, 3362–3368 (2011)

    Article  Google Scholar 

  33. Tang, T.Q., Wang, Y., Yang, X., Wu, Y.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70, 1397–1405 (2012)

    Google Scholar 

  34. Treiber, M., Hennecke, A., Helbing, D.: Derivation, properties and simulation of a gas-kinetic-based, non-local traffic model. Phys. Rev. E 59, 239–253 (1999)

    Google Scholar 

  35. Treiber, M., Kesting, A.: Evidence of convective instability in congested traffic flow: a systematic empirical and theoretical investigation. Transp. Res. B 45, 1362–1377 (2011)

    Article  Google Scholar 

  36. Treiber, M., Kesting, A.: Traffic Flow Dynamics. Springer, Berlin (2013)

    Book  Google Scholar 

  37. Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in microscopic traffic model. Physica A 360, 71–88 (2005)

    Article  Google Scholar 

  38. Wilson, R.E., Berg, P., Hooper, S., Lunt, G.: Many neighbour interaction and non-locality in traffic models. Eur. Phys. J. B 39, 397–408 (2004)

    Google Scholar 

  39. Wong, G.C.K., Wong, S.C.: A multiclass traffic flow model—an extension of LWR model with heterogeneous drivers. Transp. Res. A 36, 763–848 (2002)

    Google Scholar 

  40. Zhang, P., Wong, S.C.: Essence of conservation forms in the travelling waves solutions of higher order traffic models. Phys. Rev. E 74, 026,109.1–026,109.10 (2006)

    MathSciNet  Google Scholar 

  41. Zhang, P., Wong, S.C., Dai, S.Q.: A conserved higher-order anisotropic traffic flow model: description of equilibrium and non-equilibrium flows. Transp. Res. B 43, 562–574 (2011)

    Article  Google Scholar 

  42. Zhang, P., Wong, S.C., Shu, C.W.: A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. Eur. J. Appl. Math. 17, 171–200 (2006)

    Article  MATH  Google Scholar 

  43. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70, 1205–1211 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ngoduy.

Additional information

We wish to thank the financial support from the UK research council EPSRC, grant EP/J002186/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngoduy, D. Generalized macroscopic traffic model with time delay. Nonlinear Dyn 77, 289–296 (2014). https://doi.org/10.1007/s11071-014-1293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1293-5

Keywords

Navigation