Skip to main content
Log in

Instability conditions for a class of switched linear systems with switching delays based on sampled-data analysis: applications to DC–DC converters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

General instability (critical) conditions for a class of switched linear systems (such as DC–DC converters) with switching delays are derived. Many instability conditions for the systems with fixed/variable-switching frequency under various control schemes are also derived. The conditions also show the required ramp slopes to stabilize the converters. Some previously known instability conditions become special cases in this generalized framework. Given an arbitrary control scheme, a systematic procedure is proposed to derive the instability condition for that control scheme. Different control schemes (such as \(V^{2}\) control and voltage/current mode control, for example) are shown to have similar forms of instability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Angulo, F., Ocampo, C., Olivar, G., Ramos, R.: Nonlinear and nonsmooth dynamics in a DC–DC buck converter: two experimental set-ups. Nonlinear Dyn. 46(3), 239–257 (2006)

    Article  MATH  Google Scholar 

  2. Cafagna, D., Grassi, G.: Bifurcation analysis and chaotic behavior in boost converters: experimental results. Nonlinear Dyn. 44(1–4), 251–262 (2006)

    Article  MATH  Google Scholar 

  3. Ma, W., Wang, M., Li, C.: Control of bifurcation in the one-cycle controlled Cuk converter. Nonlinear Dyn. 67(4), 2573–2583 (2012)

    Google Scholar 

  4. Eisinberg, A., Fedele, G., Frascino, D.: Kepler’s equation and limit cycles in a class of PWM feedback control systems. Nonlinear Dyn. 62(1–2), 215–227 (2012)

    MathSciNet  Google Scholar 

  5. Danca, M.-F.: Chaotic behavior of a class of discontinuous dynamical systems of fractional-order. Nonlinear Dyn. 67(4), 2573–2583 (2012)

    Article  MathSciNet  Google Scholar 

  6. Lee, F.C.Y., Iwens, R.P., Yu, Y., Triner, J.E.: Generalized computer-aided discrete time-domain modeling and analysis of DC–DC converters. IEEE Trans. Ind. Electron. Control Instrum. IECI 26(2), 58–69 (1979)

    Article  Google Scholar 

  7. Brown, A.R., Middlebrook, R.D.: Sampled-data modelling of switching regulators. In: Proceedings of the PESC, pp. 349–369 (1981)

  8. Verghese, G.C., Elbuluk, M., Kassakian, J.G.: A general approach to sample-data modeling for power electronic circuits. IEEE Trans. Power Electron. 1(2), 76–89 (1986)

    Article  Google Scholar 

  9. Fang, C.-C.: Sampled-data analysis and control of DC–DC switching converters. PhD thesis, of Department of Electrical and Electronic Engineering, University of Maryland. http://hdl.handle.net/1903/5903, also published by UMI Dissertation Publishing (1997)

  10. Fang, C.-C., Abed, E.H.: Local bifurcations in PWM DC–DC converters. Technical Report 99-5, Institute for Systems Research, University of Maryland. http://hdl.handle.net/1903/6011 (1999)

  11. Fang, C.-C., Abed, E.H.: Local bifurcations in DC–DC converters. In: Proceedings of the EPE–PEMC, Dubrovnik-Cavtat, Croatia. Paper SSIN-02. http://arxiv.org/abs/1210.2935 (2002)

  12. Fang, C.-C., Abed, E.H.: Saddle-node bifurcation and Neimark bifurcation in PWM DC–DC converters. In: Banerjee, S., Verghese, G.C. (eds.) Nonlinear Phenomena in Power Electronics: Bifurcations, Chaos, Control, and Applications, pp. 229–240. Wiley, New York (2001)

    Google Scholar 

  13. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  14. Fang, C.-C.: Unified discrete-time modeling of buck converter in discontinuous mode. IEEE Trans. Power Electron. 26(8), 2335–2342 (2011)

    Article  Google Scholar 

  15. Hamill, D.C., Deane, J.H.B., Jefferies, J.: Modeling of chaotic DC–DC converters by iterated nonlinear mappings. IEEE Trans. Power Electron. 7(1), 25–36 (1992)

    Article  Google Scholar 

  16. Ridley, R.B.: A new, continuous-time model for current-mode control. IEEE Trans. Power Electron. 6(2), 271–280 (1991)

    Article  Google Scholar 

  17. Tan, F.D., Middlebrook, R.D.: A unified model for current-programmed converters. IEEE Trans. Power Electron. 10(4), 397–408 (1995)

    Article  Google Scholar 

  18. Fang, C.-C.: Sampled-data poles, zeros, and modeling for current mode control. Int. J. Circuit Theory Appl. 41(2), 111–127 (2013)

    Article  Google Scholar 

  19. Fang, C.-C.: Critical conditions for a class of switched linear systems based on harmonic balance: applications to DC–DC converters. Nonlinear Dyn. 70(3), 1767–1789 (2012)

    Article  Google Scholar 

  20. Fang, C.-C.: Closed-form critical conditions of subharmonic oscillations for buck converters. IEEE Trans. Circuits Syst. I 60(7), 1967–1974 (2013)

    Article  Google Scholar 

  21. Fossas, E., Olivar, G.: Study of chaos in the buck converter. IEEE Trans. Circuits Syst. I 43(1), 13–25 (1996)

    Article  Google Scholar 

  22. Tse, C.K., Di Bernardo, M.: Complex behavior in switching power converters. Proc. IEEE 90(5), 768–781 (2002)

    Article  Google Scholar 

  23. Mazumder, S.K., Nayfeh, A.H., Boroyevich, D.: An investigation into the fast- and slow-scale instabilities of a single phase bidirectional boost converter. IEEE Trans. Power Electron. 18(4), 1063–1069 (2003)

    Article  Google Scholar 

  24. Erickson, R.W., Maksimovic, D.: Fundamentals of Power Electronics, 2nd edn. Springer, Berlin (2001)

    Book  Google Scholar 

  25. Fang, C.-C.: Bifurcation boundary conditions for current programmed PWM DC–DC converters at light loading. Int. J. Electron. 99(10), 1365–1393 (2012)

    Article  Google Scholar 

  26. El Aroudi, A., Rodriguez, E., Leyva, R., Alarcon, E.: A design-oriented combined approach for bifurcation prediction in switched-mode power converters. IEEE Trans. Circuits Syst. II Exp. Br. 57(3), 218–222 (2010)

    Article  Google Scholar 

  27. Redl, R., Sun, J.: Ripple-based control of switching regulators: an overview. IEEE Trans. Power Electron. 24(12), 2669–2680 (2009)

    Article  Google Scholar 

  28. Li, J., Lee, F.C.: Modeling of \(V^2\) current-mode control. IEEE Trans. Circuits Syst. I 57(9), 2552–2563 (2010)

    Article  MathSciNet  Google Scholar 

  29. Fang, C.-C.: Closed-form critical conditions of instabilities for constant on-time controlled buck converters. IEEE Trans. Circuits Syst. I 59(12), 3090–3097 (2012)

    Article  MathSciNet  Google Scholar 

  30. Fang, C.-C.: Saddle-node bifurcation in the buck converter with constant current load. Nonlinear Dyn. 69(4), 1739–1750 (2012)

    Google Scholar 

  31. Fang, C.-C.: Critical conditions of saddle-node bifurcations in switching DC–DC converters. Int. J. Electron. 100(8), 1147–1174 (2012)

    Article  Google Scholar 

  32. Fang, C.-C.: Modeling and instability of average current control. In: Proceedings of the EPE–PEMC, Dubrovnik, Croatia. Paper SSIN-03. http://arxiv.org/abs/1210.1959 (2002)

  33. van der Woude, J.W., de Koning, W.L., Fuad, Y.: On the periodic behavior of PWM DC–DC converters. IEEE Trans. Power Electron. 17(4), 585–595 (2002)

    Article  Google Scholar 

  34. Wang, J., Xu, J., Bao, B.: Analysis of pulse bursting phenomenon in constant-on-time-controlled buck converter. IEEE Trans. Ind. Electron. 58(12), 5406–5410 (2011)

    Article  Google Scholar 

  35. Fang, C.-C., Abed, E.H.: Limit cycle stabilization in PWM DC–DC converters. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3046–3051, Tampa (1998)

  36. Fang, C.-C., Abed, E.H.: Sampled-data modeling and analysis of closed-loop PWM DC–DC converters. In: Proceedings of the IEEE Proceedings of the Circuits and Systems, vol. 5, pp. 110–115, Orlando (1999)

  37. Fang, C.-C.: Exact orbital stability analysis of static and dynamic ramp compensations in DC–DC converters. In: IEEE International Symposium on Industrial Electronics, pp. 2124–2129, Pusan (2001)

  38. Fang, C.-C.: Using Nyquist or Nyquist-like plot to predict three typical instabilities in DC–DC converters. J. Frankl. Inst. 350(10), 3293–3312 (2013)

    Article  Google Scholar 

  39. Fang, C.-C.: Unified model of voltage/current mode control to predict subharmonic oscillation. http://arxiv.org/abs/1202.4232v1

  40. Sun, J.: Characterization and performance comparison of ripple-based control for voltage regulator modules. IEEE Trans. Power Electron. 21(2), 346–353 (2006)

    Article  Google Scholar 

  41. Zafrany, I., Ben-Yaakov, S.: A chaos model of subharmonic oscillations in current mode PWM boost converters. In: Proceedings of the IEEE PESC, pp. 1111–1117 (1995)

  42. Asahara, H., Kousaka, T., Banerjee, S.: Stability analysis in the current-mode controlled DC/DC buck converter with switching delay. In Proceedings of the Nonlinear Dynamics of Electronic Systems, Wolfenbuttel (2012)

  43. Anunciada, A.V., Silva, M.M.: On the stability and subharmonic susceptibility of current-mode controlled converters. In Proceedings of the IEEE PESC, pp. 345–353 (1992)

  44. Basso, C.P.: Switch-Mode Power Supplies. McGraw-Hill, New York (2008)

    Google Scholar 

  45. Tang, W., Lee, F.C., Ridley, R.B.: Small-signal modeling of average current-mode control. IEEE Trans. Power Electron. 8(2), 112–119 (1993)

    Article  Google Scholar 

  46. Yu, F.: Modeling of \(V^2\) control with composite capacitors and average current mode control. Master’s thesis, Department of ECE, Virginia Polytechnic Institute and State University, Blacksburg (2011)

  47. Lehman, B., Bass, R.M.: Switching frequency dependent averaged models for PWM DC–DC converters. IEEE Trans. Power Electron. 11(1), 89–98 (1996)

    Google Scholar 

  48. Li, J., Lee, F.C.: New modeling approach and equivalent circuit representation for current-mode control. IEEE Trans. Power Electron. 25(5), 1218–1230 (2010)

    Article  Google Scholar 

  49. Yu, F., Lee, F.C.: Design oriented model for constant on-time \(V^2\) control. In: IEEE Energy Conversion Congress and Exposition, pp. 3115–3122 (2010)

  50. Tian, S., Cheng, K.-Y., Lee, F.C., Mattavelli, P.: Small-signal model analysis and design of constant-on-time \(V^2\) control for low-ESR caps with external ramp compensation. In: IEEE Energy Conversion Congress and Exposition, pp. 2944–2951 (2011)

  51. Fang, C.-C., Redl, R.: Subharmonic stability limits for the buck converter with ripple-based constant on-time control and feedback filter. IEEE Trans. Power Electron. 29(4), 2135–2142 (2014)

    Article  Google Scholar 

  52. Lin, Y.-C., Chen, C.-J., Chen, D., Wang, B.: A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters. IEEE Trans. Power Electron. 27(10), 4301–4310 (2012)

    Article  MathSciNet  Google Scholar 

  53. Fang, C.-C.: Bifurcation boundary conditions for switching DC–DC converters under constant on-time control. http://arxiv.org/abs/1202.4534.

  54. Qian, T.: Subharmonic analysis for buck converters with constant on-time control and ramp compensation. IEEE Trans. Ind. Electron. 60(5), 1780–1786 (2013)

    Article  Google Scholar 

  55. Fang, C.-C., Abed, E.H.: Robust feedback stabilization of limit cycles in PWM DC–DC converters. Nonlinear Dyn. 27(3), 295–309 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  56. Fang, C.-C., Abed, E.H.: Sampled-data modeling and analysis of power stages of PWM DC–DC converters. Int. J. Electron. 88(3), 347–369 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Chieh Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, CC. Instability conditions for a class of switched linear systems with switching delays based on sampled-data analysis: applications to DC–DC converters. Nonlinear Dyn 77, 185–208 (2014). https://doi.org/10.1007/s11071-014-1283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1283-7

Keywords

Navigation