Skip to main content
Log in

A fast algorithm to calculate the critical coupling strength for synchronization in a chain of Kuramoto oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Synchronization in a one-dimensional chain of Kuramoto oscillators with periodic boundary conditions is studied. An algorithm to rapidly calculate the critical coupling strength \(K_c\) for complete frequency synchronization is presented according to the mathematical constraint conditions and the periodic boundary conditions. By this new algorithm, we have checked the relation between \(\langle K_c\rangle \) and \(N\), which is \(\langle K_c\rangle \sim \sqrt{N}\), not only for small \(N\), but also for large \(N\). We also investigate the heavy-tailed distribution of \(K_c\) for random intrinsic frequencies, which is obtained by showing that the synchronization problem is equivalent to a discretization of Brownian motion. This theoretical result was checked by generating a large sample of \(K_c\) for large \(N\) from our algorithm to get the empirical density of \(K_c\). Finally, we derive the permutation for the maximum coupling strength and its exact expression, which grows linearly with \(N\) and would provide the theoretical support for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buck, J.: Synchronous rhythmic flashing of fireflies, II. Q. Rev. Biol. 63, 265 (1988)

    Article  Google Scholar 

  2. Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton, NJ (1988)

    MATH  Google Scholar 

  3. Rodriguez, E., George, N., Lachaux, J.P., Renault, J.M.B., Varela, F.J.: Perceptions shadow: long-distance synchronization of human brain activity. Nature 397, 430 (1999)

    Article  Google Scholar 

  4. Kiss, I.Z., Zhai, Y., Hudson, J.L.: Emerging coherence in a population of chemical oscillators. Science 296, 1676 (2002)

    Article  Google Scholar 

  5. Arenas, A., D’iaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93 (2008)

    Article  MathSciNet  Google Scholar 

  6. Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  7. Suresh, R., Senthilkumar, D.V., Lakshmanan, M., Kurths, J.: Global phase synchronization in an array of time-delay systems. Phys. Rev. E 82, 016215 (2010)

    Article  Google Scholar 

  8. Winfree, A.T.: Geometry of Biological Time. Springer, New York (1990)

    MATH  Google Scholar 

  9. Freund, H.J.: Motor unit and muscle activity in voluntary motor control. Psychoanal. Rev. 63, 387 (1983)

    Google Scholar 

  10. Levy, R.: High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J. Neurosci. 20, 7766 (2000)

    Google Scholar 

  11. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Dover, New York (2003)

    Google Scholar 

  12. Hong, H., Park, H., Choi, M.Y.: Collective phase synchronization in locally-coupled limit-cycle oscillators. Phys. Rev. E 70, 045204 (2004)

    Article  Google Scholar 

  13. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  14. Manrubbia, S., Mikhailov, A., Zanette, D.: Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems. World Scientific, Singapore (2004)

    Google Scholar 

  15. EI-Nashar, H.F., Muruganandam, P., Ferreira, F.F., Cerdeira, H.A.: Transition to complete synchronization in phase-coupled oscillators with nearest neighbor coupling. Chaos 19, 013103 (2009)

    Article  Google Scholar 

  16. EI-Nashar, H.F., Cerdeira, H.A.: Determination of the critical coupling for oscillators in a ring. Chaos 19, 033127 (2009)

    Google Scholar 

  17. Yamapi, R., Enjieu Kadji, H.G., Filatrella, G.: Stability of the synchronization manifold in nearest neighbor nonidentical van der Pol-like oscillators. Nonlinear Dyn. 61, 275 (2010)

  18. Muruganandam, P., Ferreira, F.F., EI-Nashar, H.F., Cerdeira, H.A.: Analytical calculation of the transition to complete phase synchronization in coupled oscillators. Pramana-J. Phys. 70, 1143 (2008)

    Article  Google Scholar 

  19. Tilles, P.F.C., Ferreira, F.F., Cerdeira, H.A.: Multistable behavior above synchronization in a locally coupled Kuramoto model. Phys. Rev. E 83, 066206 (2011)

    Article  Google Scholar 

  20. Ma, Y., Yoshikawa, K.: Self-sustained collective oscillation generated in an array of nonoscillatory cells. Phys. Rev. E 79, 046217 (2009)

    Article  MathSciNet  Google Scholar 

  21. Strogatz, S.H., Mirollo, R.E.: Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies. Physica D 31, 143 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, Z., Lai, Y., Hoppensteadt, F.C.: Phase clustering and transition to phase synchronization in a large number of coupled nonlinear oscillators. Phys. Rev. E 63, 055201 (2001)

    Article  Google Scholar 

  23. Wu, Y., Xiao, J.H., Hu, G., Zhan, M.: Synchronizing large number of nonidentical oscillators with small coupling. Euro. Phys. Lett. 97, 40005 (2012)

    Article  Google Scholar 

  24. Feller, W.: The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Stat. 22, 427 (1951)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghua Xiao.

Additional information

This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 61104152, 11375033, 11262006, and 11272065) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Wu, Y., Shi, X. et al. A fast algorithm to calculate the critical coupling strength for synchronization in a chain of Kuramoto oscillators. Nonlinear Dyn 77, 99–105 (2014). https://doi.org/10.1007/s11071-014-1276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1276-6

Keywords

Navigation