Skip to main content
Log in

Effects of the van der Waals force, squeeze-film damping, and contact bounce on the dynamics of electrostatic microcantilevers before and after pull-in

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The operational range of microcantilever beams under electrostatic force can be extended beyond pull-in in the presence of an intermediate dielectric layer. In this paper, a systematic method for deriving dynamic equation of microcantilevers under electrostatic force is presented. This model covers the behavior of the microcantilevers before and after the pull-in including the effects of van der Waals force, squeeze-film damping, and contact bounce. First, a polynomial approximate shape function with a time-dependent variable for each configuration is defined. Using Hamilton’s principle, dynamic equations of microcantilever in all configurations have been derived. Comparison between modeling results and previous experimental data that have been used for validation of the model shows a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ostasevicius, V., Dauksevicius, R.: Microsystems dynamics. In: Tzafestas, S.G. (ed.) International Series on Intelligent Systems, Control, and Automation: Science and Engineering, vol. 44, pp. 3–4. Springer, Lithuania (2011)

    Google Scholar 

  2. Lishchynska, M., Cordero, N., Slattery, O., O’Mahony, C.: Modelling electrostatic behaviour of microcantilevers incorporating residual stress gradient and non-ideal anchors. J. Micromech. Microeng. 15, 10–14 (2005)

    Article  Google Scholar 

  3. Agarwal, N., Aluru, N.R.: Stochastic analysis of electrostatic MEMS subjected to parameter variations. J. Microelectromech. Syst. 18, 1454–1468 (2009)

    Article  Google Scholar 

  4. Chaterjee, S., Pohit, G.: A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J. Sound Vib. 322, 969–986 (2009)

    Article  Google Scholar 

  5. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  6. Hu, Y.C., Chang, C.M., Huang, S.C.: Some design considerations on the electrostatically actuated microstructures. Sens. Actuators A. 112, 155–161 (2004)

    Article  Google Scholar 

  7. De, S.K., Aluru, N.R.: Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS. J. Microelectromech. Syst. 13, 737–758 (2004)

    Article  Google Scholar 

  8. Muldavin, J.B., Rebeiz, G.M.: High-isolation CPW MEMS shunt switches. 1. Modeling. IEEE Trans. Microwave Theory Technol. 48, 1045–1052 (2000)

    Article  Google Scholar 

  9. Newman, H.S.: RF MEMS switches and applications. In: Proceedings of the IEEE 02CH37320, 40th Annual International Reliability Physics Symposium, Dallas, TX, pp. 111–115 (2002)

  10. Mahameed, R., Rebeiz, G.M.: Electrostatic RF MEMS Tunable Capacitors with Analog Tunability and Low Temperature Sensitivity. In: Proceedings of the IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, pp. 1254–1257 (2010)

  11. Ionis, G.V., Dec, A., Suyama, K.: A zipper-action differential micro-mechanical tunable capacitor. In: Proc. MEMS Conf., Berkeley, pp. 24–26 (2001)

  12. Fourn, E., Pothier, A., Champeaux, C., Tristant, P., Catherinot, A., Blondy, P., Tanné, G., Rius, E., Person, C., Huret, F.: MEMS switchable interdigital coplanar filter. IEEE Trans. Microwave Theory Tech. 51, 320–324 (2003)

    Article  Google Scholar 

  13. Ketterl, T., Weller, T., Fries, D.: A micromachined tunable CPW resonator. In: Proc. IEEE MTT-S Int. Microwave Symp. Digest, Phoenix, AZ, vol. 1, pp. 345–348 (2001)

  14. Gilbert, J.R., Legtenberg, R., Senturia, S.D.: 3D coupled electromechanics for MEMS: applications of CoSolve-EM. In: Proc. Int. Conf. on MEMS, Amsterdam, The Netherlands, pp. 122–127 (1995)

  15. Gilbert, J.R., Ananthasuresh, G.K., Senturia, S.D.: 3D modeling of contact problems and hysteresis in coupled electro-mechanics. In: Proc. 9th Int. Workshop on Microelectromechanical Systems, San Diego, CA, pp. 127–132 (1996)

  16. Lam, T., Darling, R.B.: Physical modeling of MEMS cantilever beams and the measurement of stiction force. In: Proc. Model. Simul. Microsyst., pp. 418–421 (2001)

  17. Knapp, J.A., de Boer, M.P.: Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces. J. Microelectromech. Syst. 11, 754–764 (2002)

    Article  Google Scholar 

  18. Yin, Z., Ya-pu, Z.: Static study of cantilever beam stiction under electrostatic force influence. Acta Mech. Solida Sinica. 17, 104–112 (2004)

    Google Scholar 

  19. Basu, S., Prabhakar, A., Bhattacharya, E.: Estimation of stiction force from electrical and optical measurements on cantilever beams. J. Microelectromech. Syst. 16, 1254–1262 (2007)

    Article  Google Scholar 

  20. Gorthi, S., Mohanty, A., Chatterjee, A.: Cantilever beam electrostatic MEMS actuators beyond pull-in. J. Micromech. Microeng. 16, 1800–1810 (2006)

    Google Scholar 

  21. Vyasarayani, C.P., Abdel-Rahman, E.M., McPhee, J.: Modeling of contact and stiction in electrostatic microcantilever actuators. J. Nanotechnol. Eng. Med. 3, 011003.1–011003.8 (2012)

    Google Scholar 

  22. Abtahi, M., Vossoughi, G.R., Meghdari, A.: Full operational range dynamic modeling of microcantilever beams under electrostatic force. J. Microelectromech. Syst. 22, 1190–1198 (2013)

    Article  Google Scholar 

  23. Delrio, F.W., De Boer, M.P., Knapp, J.A., Reedy Jr, E.D., Clews, P.J., Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)

    Article  Google Scholar 

  24. Nayfeh, A.H., Younis, M.I.: A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J. Micromech. Microeng. 14, 170–181 (2003)

    Google Scholar 

  25. Moghimi Zand, M., Ahmadian, M.T.: Characterization of coupled-domain multi-layer microplates in pull-in phenomenon, vibrations and dynamics. Int. J. Mech. Sci. 49, 1226–1237 (2007)

    Google Scholar 

  26. LaRose, R.P., Murphy, K.D.: Impact dynamics of MEMS switches. Nonlinear Dyn. 60, 327–339 (2010)

    Article  MATH  Google Scholar 

  27. Allen, M.S., Massad, J.E., Field Jr, R.V.: Input and design optimization under uncertainty to minimize the impact velocity of an electrostatically actuated MEMS switch. J. Vib. Acoust. 130, 021009.1–021009.9 (2008)

    Article  Google Scholar 

  28. Pandey, A.K., Pratap, R.: Effect of flexural modes on squeeze film damping in MEMS cantilever resonators. J. Micromech. Microeng. 17, 2475–2484 (2007)

    Article  Google Scholar 

  29. Osterberg, P.: Electrostatically Actuated Microelectromechanical Test Structures for Material Property Measurement. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Vossoughi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abtahi, M., Vossoughi, G. & Meghdari, A. Effects of the van der Waals force, squeeze-film damping, and contact bounce on the dynamics of electrostatic microcantilevers before and after pull-in. Nonlinear Dyn 77, 87–98 (2014). https://doi.org/10.1007/s11071-014-1275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1275-7

Keywords

Navigation