Skip to main content

Bifurcation analysis of a two-DoF mechanical system subject to digital position control. Part I: theoretical investigation

Abstract

This paper analyzes the double Neimark–Sacker bifurcation occurring in a two-DoF system, subject to PD digital position control. In the model the control force is considered piecewise constant. Introducing a nonlinearity related to the saturation of the control force, the bifurcations occurring in the system are analyzed. The system is generally losing stability through Neimark–Sacker bifurcations, with relatively simple dynamics. However, the interaction of two different Neimark–Sacker bifurcations steers the system to much more complicated behavior. Our analysis is carried out using the method proposed by Kuznetsov and Meijer. It consists of reducing the dynamics of the nonlinear map to its local center manifold, eliminating the non-internally resonant nonlinear terms and transforming the nonlinear map to an amplitude map, that describes the local dynamics of the system. The analysis of this amplitude map allows us to define regions, in the space of the control gains, with a close interaction of the two bifurcations, which generates unstable quasiperiodic motion on a 3-torus, coexisting with two stable 2-torus quasiperiodic motions. Other regions in the space of the control gains show the coexistence of 2-torus quasiperiodic solutions, one stable and the other unstable. All the results described in this work are analytical and obtained in closed form, numerical simulations illustrate and confirm the analytical results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Siciliano, B., Villani, L.: Robot Force Control. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  2. 2.

    Natale, C.: Interaction Control of Robot Manipulators. Springer, Berlin, Heidelberg (2003)

    MATH  Google Scholar 

  3. 3.

    Nicosia, S., Tomei, P., Tornambe, A.: Discrete time modeling of flexible robots. Proceedings of the 29th IEEE Conference on Decision and Control 2, 539–544 (1990)

  4. 4.

    Stepan, G.: Vibrations of machines subjected to digital force control. Int. J. Solids Struct. 38, 2149–2159 (2001)

    Article  MATH  Google Scholar 

  5. 5.

    Krutova, I.N.: Studying stability of the flexible spacecraft with a discrete control system. Autom. Remote Control 62(12), 1964–1977 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6.

    Kovacs, L.L., Kovecses, J., Stepan, G.: Analysis of effects of differential gain on dynamic stability of digital force control. Int. J. Nonlin. Mech. 43, 514–520 (2008)

    Article  Google Scholar 

  7. 7.

    Habib, G., Rega, G., Stapan, G.: Nonlinear bifurcation analysis of a single-DoF model of a robotic arm subject to digital position control. J. Comput. Nonlin. Dyn. 8(1), 011009 (2013)

    Article  Google Scholar 

  8. 8.

    Hamzi, B., Barbot, J.P., Monaco, S., Normand-Cyrot, D.: Nonlinear discrete-time control of systems with a Neimark–Sacker bifurcation. Syst. Control Lett. 44(4), 245–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    Yaghoobi, H., Abed, E.H.: Local feedback control of the Naimark–Sacker bifurcation. Int. J. Bifurc. Chaos 13(4), 879–893 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Yuan, Z., Hu, D., Huang, L.: Stability and bifurcation analysis on a discrete-time neural network. J. Comput. Appl. Math. 177, 89–100 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer, New York (1986)

    Google Scholar 

  12. 12.

    Troger, H., Steindl, A.: Nonlinear Stability and Bifurcation Theory. Springer, New York (1991)

    Book  MATH  Google Scholar 

  13. 13.

    Kuznetsov, YuA: Elements of Applied Bifurcation Theory. Springer, New York (1998)

    MATH  Google Scholar 

  14. 14.

    Kuznetsov, YuA, Meijer, H.G.E.: Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues. SIAM J. Sci. Comput. 26(6), 1932–1954 (2005)

    Google Scholar 

  15. 15.

    Kuznetsov, YuA, Meijer, H.G.E.: Remarks on interacting Neimark–Sacker bifurcations. J. Differ. Equ. Appl. 12(10), 1009–1035 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Luo, G.W., Chu, Y.D., Zhang, Y.L., Zhang, J.G.: Double Neimark–Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops. J. Sound Vib. 298, 154–179 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Habib, G., Rega, G., Stepan, G.: Stability analysis of a two-DoF mechanical system subject to proportional-derivative digital position control. J. Vib. Control (2013). doi:10.1177/1077546312474014

  18. 18.

    Habib, G., Rega, G., Stepan, G.: Analytical investigation of single and double Neimark–Sacker bifurcations. Period. Polytech. 56(1), 13–22 (2012)

    Article  Google Scholar 

  19. 19.

    Habib, G., Rega, G., Stapan, G.: Bifurcation analysis of a Two-DoF mechanical system subject to digital position control. Part II: effects of asymmetry and transition to chaos. Nonlin. Dyn. 74(4), 1223–1241 (2013)

    Google Scholar 

Download references

Acknowledgments

This research was also supported by the Hungarian National Science Foundation under grant no. OTKA 101714.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Habib.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Habib, G., Rega, G. & Stepan, G. Bifurcation analysis of a two-DoF mechanical system subject to digital position control. Part I: theoretical investigation. Nonlinear Dyn 76, 1781–1796 (2014). https://doi.org/10.1007/s11071-014-1246-z

Download citation

Keywords

  • Digital position control
  • Double Neimark–Sacker bifurcation
  • Center manifold reduction
  • Normal form