Skip to main content
Log in

The time-dependent Ginzburg–Landau equation for car-following model considering anticipation-driving behavior

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a car-following model considering anticipation-driving behavior is considered to describe the traffic jam. The nature of the model is investigated using linear and nonlinear analysis method. A thermodynamic theory is formulated for describing the phase transitions and critical phenomena, and the time-dependent Ginzburg–Landau equation is derived to describe traffic flow near the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, T.Q., Li, C.Y., Huang, H.J., Shang, H.Y.: A new fundamental diagram theory with the individual difference of the drivers perception ability. Nonlinear Dyn. 67, 2255–2265 (2012)

    Article  Google Scholar 

  2. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: A new lattice model of traffic flow with the consideration of the traffic interruption probability. Phys. A 391, 656–663 (2012)

    Article  Google Scholar 

  3. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the anticipation effect of potential lane changing. Phys. Lett. A 376, 447–451 (2012)

    Article  MATH  Google Scholar 

  4. Li, Z.P., Liu, F.Q., Sun, J.: A lattice traffic model with consideration of preceding mixture traffic information. Chin. Phys. B 20, 088901 (2011)

    Article  Google Scholar 

  5. Kang, Y.R., Sun, D.H.: Lattice hydrodynamic traffic flow model with explicit drivers’ physical delay. Nonlinear Dyn. 71, 531–537 (2013)

    Article  MathSciNet  Google Scholar 

  6. Tian, H.H., Hu, H.D., Wei, Y.F., Xue, Y., Lu, W.Z.: Lattice hydrodynamic model with bidirectional pedestrian flow. Phys. A 388, 2895–2902 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  8. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  9. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001)

    Article  Google Scholar 

  10. Ge, H.X., Cheng, R.J., Li, Z.P.: Two velocity difference model for a car following theory. Phys. A 387, 5239–5245 (2008)

    Article  Google Scholar 

  11. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70, 1205–1211 (2012)

    Article  MathSciNet  Google Scholar 

  12. Tang, T.Q., Li, C.Y., Huang, H.J.: A new car-following model with the consideration of the driver’s forecast effect. Phys. Lett. A 374, 3951–3956 (2010)

    Article  MATH  Google Scholar 

  13. Li, C.Y., Tang, T.Q., Huang, H.J., Shang, H.Y.: A new car-following model with the consideration of the driving resistance. Chin. Phys. Lett. 28, 038902 (2011)

    Google Scholar 

  14. Peng, G.H.: A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system. Nonlinear Dyn. 73, 1035–1043 (2013)

    Google Scholar 

  15. Newell, G.F.: Nonlinear effects in the dynamics of car-following. Oper. Res. 9, 209 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  16. Whitham, G.B.: Exact solutions for a discrete system arising in traffic flow. Proc. R. Soc. Lond. Ser. A 428, 49–69 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nagatani, T.: Thermodynamic theory for the jamming transition in traffic flow. Phys. Rev. E 58, 4271–4276 (1998)

    Article  Google Scholar 

  18. Nagatani, T.: Jamming transition in the lattice models of traffic. Phys. Rev. E 59, 4857–4864 (1999)

    Article  Google Scholar 

  19. Ge, H.X., Cheng, R.J., Lo, S.M.: Time-dependent Ginzburg–Landau equation for lattice hydrodynamic model describing pedestrian flow. Chin. Phys. B 22, 070507 (2013)

    Article  Google Scholar 

  20. Nagatani, T.: TDGL and MKDV equations for jamming transiton in the lattice models of traffic. Phys. A 264, 581–592 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant Nos.11072117 and 61074142), the Natural Science Foundation of ZheJiang Province (Grant No.Y13A010029), Disciplinary Project of Ningbo, China (Grant No. SZXL1067), and K. C.Wong Magna Fund in Ningbo University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Jun Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, HX., Lv, F., Zheng, PJ. et al. The time-dependent Ginzburg–Landau equation for car-following model considering anticipation-driving behavior. Nonlinear Dyn 76, 1497–1501 (2014). https://doi.org/10.1007/s11071-013-1223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1223-y

Keywords

Navigation