Skip to main content
Log in

Nonlinear transverse vibration of axially accelerating strings with exact internal resonances and longitudinally varying tensions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work explores the steady-state periodic transverse responses with their stabilities of axially accelerating viscoelastic strings. Longitudinally varying tension due to the axial acceleration is recognized in the modeling, while the tension was approximatively assumed to be longitudinally uniform in previous investigations. Exact internal resonances are highlighted in the analysis, while the resonances have been neglected in all available works. A governing equation of transverse nonlinear vibration is derived from the generalized Hamilton principle and the Kelvin viscoelastic model on the assumption that the string deformation is not infinitesimal, but still small. The axial speed is supposed to be a small simple harmonic fluctuation about the constant mean axial speed. The method of multiple scales is applied to solve the governing equation in the parametric resonances when the axial speed fluctuation frequency approaches the first three natural frequencies of the linear generating system based on 1–3 term truncations. The amplitude, the existence conditions, and the stability are determined, and the effects of the viscosity, the mean axial speed, the axial speed fluctuation amplitude, and the axial support rigidity on the amplitude and the existence are examined via the numerical examples. It is found that the 1-term, the 2-term, and the 3-term truncations yield the qualitatively same and the quantitatively close results in the case that there exist the exact internal resonances among the first three frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58, 91–116 (2005)

    Article  Google Scholar 

  2. Miranker, W.L.: The wave equation in a medium in motion. IBM J. Res. Dev. 4, 36–42 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  3. Mote Jr, C.D.: Stability of systems transporting accelerating axially moving materials. J. Dyn. Syst. Meas. Control Trans. ASME 97, 96–98 (1975)

    Article  Google Scholar 

  4. Pakdemirli, M., Batan, H.: Dynamic stability of a constantly accelerating strip. J. Sound Vib. 168, 371–378 (1993)

    Article  MATH  Google Scholar 

  5. Pakdemirli, M., Ulsoy, A.G., Ceranoglu, A.: Transverse vibration of an axially accelerating string. J. Sound Vib. 169, 179–196 (1994)

    Article  MATH  Google Scholar 

  6. Pakdemirli, M., Ulsoy, A.G.: Stability analysis of an axially accelerating string. J. Sound Vib. 203, 815–832 (1997)

    Article  Google Scholar 

  7. Suweken, G., Van Horssen, W.T.: On the transversal vibrations of a conveyor belt with a low and time- varying velocity, part I: the string-like case. J. Sound Vib. 264, 117–133 (2003)

    Article  Google Scholar 

  8. Zen, G., Müftü, S.: Stability of an axially accelerating string subjected to frictional guiding forces. J. Sound Vib. 289, 551–576 (2006)

    Article  Google Scholar 

  9. Ponomareva, S.V., Van Horssen, W.T.: On transversal vibrations of an axially moving string with a time-varying velocity. Nonlinear Dyn. 50, 315–323 (2007)

    Article  MATH  Google Scholar 

  10. Ghayesh, M.H.: Stability characteristics of an axially accelerating string supported by an elastic foundation. Mech. Mach. Theory 44, 1964–1979 (2009)

    Article  MATH  Google Scholar 

  11. Fung, R.F., Huang, J.S., Chen, Y.C.: The transient amplitude of the viscoelastic travelling string: an integral constitutive law. J. Sound Vib. 201, 153–167 (1997)

    Article  Google Scholar 

  12. Fung, R.F., Huang, J.S., Chen, Y.C., Yao, C.M.: Nonlinear dynamic analysis of the viscoelastic string with a harmonically varying transport speed. Comput. Struct. 66, 777–784 (1998)

    Article  MATH  Google Scholar 

  13. Chen, L.Q., Zhao, W.J., Zu, J.W.: Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law. J. Sound Vib. 278, 861–871 (2004)

    Article  MATH  Google Scholar 

  14. Huang, J.S., Fung, R.F., Lin, C.H.: Dynamic stability of a moving string undergoing three-dimensional vibration. Int. J. Mech. Sci. 37, 145–160 (1995)

    Article  MATH  Google Scholar 

  15. Chen, L.Q.: Principal parametric resonance of axially accelerating viscoelastic strings constituted by the Boltzmann superposition principle. Proc. R. Soc. Lond. 461, 2701–2720 (2005)

    Article  MATH  Google Scholar 

  16. Ghayesh, M.H.: Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide. J. Sound Vib. 314, 757–774 (2008)

    Article  Google Scholar 

  17. Ghayesh, M.H.: Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation. Int. J. Non-Linear Mech. 45, 382–394 (2010)

    Article  Google Scholar 

  18. Chen, L.Q., Chen, H., Lim, C.W.: Asymptotic analysis of axially accelerating viscoelastic strings Int. J. Eng. Sci. 46, 976–985 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen, L.Q., Tang, Y.Q.: Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. J. Vib. Acoust. 134, 011008 (2012)

    Article  Google Scholar 

  20. Tang, Y.Q., Chen, L.Q., Zhang, H.J., Yang, S.P.: Stability of axially accelerating viscoelastic Timoshenko beams: recognition of longitudinally varying tensions. Mech. Mach. Theory 62, 31–50 (2013)

    Article  Google Scholar 

  21. Chen, L.Q., Tang, Y.Q.: Combination and principal parametric resonances of axially accelerating viscoelastic beams: recognition of longitudinally varying tensions. J. Sound Vib. 330, 5598–5614 (2011)

    Google Scholar 

  22. Zhang, L., Zu, J.W.: Nonlinear vibration of parametrically excited moving belts. J. Appl. Mech. Trans. ASME 66, 396–409 (1999)

    Article  Google Scholar 

  23. Mockensturm, E.M., Guo, J.: Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings. J. Appl. Mech. Trans. ASME 72, 374–380 (2005)

    Article  MATH  Google Scholar 

  24. Wickert, J.A., Mote Jr, C.D.: Classical vibration analysis of axially moving continua. J. Appl. Mech. Trans. ASME 57, 738–744 (1990)

    Article  MATH  Google Scholar 

  25. Mote Jr, C.D.: A study of band saw vibrations. J. Franklin Inst. 276, 430–444 (1965)

    Article  Google Scholar 

  26. Wickert, J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27, 503–517 (1992)

    Article  MATH  Google Scholar 

  27. Chen, L.Q., Zu, J.W.: Solvability condition in multi-scale analysis of gyroscopic continua. J. Sound Vib. 309, 338–342 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Outstanding Young Scientists Foundation of China (No. 10725209), the State Key Program of National Natural Science of China (Nos. 10932006 and 11232009), the National Natural Science Foundation of China (No. 11202135) and Shanghai Leading Academic Discipline Project (No. S30106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Appendices

Appendix A

$$\begin{aligned} \kappa _{11}&= -\frac{2a_1^2 \left( {a_1^2 +\pi ^{2}} \right) ^{2}+\pi ^{4}\sin ^{2}a_1 }{8a_1^2 \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \hbox {i}\end{aligned}$$
(106)
$$\begin{aligned} \kappa _{12}&= \frac{\omega _1 \pi ^{4}\sin ^{2}a_1 }{4a_1^2 \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(107)
$$\begin{aligned} \mu _{121}&= -\left\{ 9\left( {9a_1^6 -73a_1^4 \pi ^{2}-73a_1^2 \pi ^{4}+9\pi ^{6}} \right) ^{2}\right. \nonumber \\&\quad +1280a_1^2 \pi ^{4}\left( {73a_1^4-18a_1^2 \pi ^{2}+9\pi ^{4}} \right) \nonumber \\&\quad +\left. 128a_1^2 \pi ^{4}\left[ 9\left( {9a_1^2 -\pi ^{2}} \right) ^{2}\cos a_1\right. \right. \nonumber \\&\quad \left. \left. +\left( {a_1^2 -9\pi ^{2}} \right) ^{2}\cos 3a_1 \right] \right\} \nonumber \\&\quad \Big /{\left[ {9\left( {9a_1^4 -82a_1^2 \pi ^{2}+9\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) } \right] }k_1^2 \hbox {i} \nonumber \\ \end{aligned}$$
(108)
$$\begin{aligned} \mu _{122}=\frac{512a_1^2 \pi ^{4}\omega _1 \cos ^{2}0.5a_1 \left[ {120\left( {\pi ^{4}-a_1^4 } \right) +\left( {a_1^2 -9\pi ^{2}} \right) ^{2}\left( {\cos 2a_1 -2\cos a_1 } \right) } \right] }{3\left( {9a_1^4 -82a_1^2 \pi ^{2}+9\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(109)
$$\begin{aligned} \mu _{131}&= -9\left\{ 8\left( {4a_1^6 -13a_1^4 \pi ^{2}-13a_1^2 \pi ^{4}+4\pi ^{6}} \right) ^{2}\right. \nonumber \\&\quad +\,45a_1^2 \pi ^{4}\left( {13a_1^4 -8a_1^2\pi ^{2}+4\pi ^{4}} \right) \nonumber \\&\quad - 9a_1^2 \pi ^{4}\left[ 4\left( {4a_1^2 -\pi ^{2}} \right) ^{2}\cos 2a_1\right. \nonumber \\&\quad \left. \left. +\left( {a_1^2 -4\pi ^{2}} \right) ^{2}\cos 4a_1 \right] \right\} \nonumber \\&\quad \Big /{\left[ {32\left( {4a_1^4 -17a_1^2 \pi ^{2}+4\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) } \right] }k_1^2 \hbox {i}\nonumber \\ \end{aligned}$$
(110)
$$\begin{aligned}&\mu _{132}\nonumber \\&\quad =\frac{81a_1^2 \pi ^{4}\omega _1 \sin ^{2}a_1 \left[ {15\left( {\pi ^{4}-a_1^4 } \right) +\left( {a_1^2 -4\pi ^{2}} \right) ^{2}\cos 2a_1 } \right] }{2\left( {4a_1^4 -17a_1^2 \pi ^{2}+ 4\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \nonumber \\ \end{aligned}$$
(111)
$$\begin{aligned} \tau _{11}&= -\frac{27\pi ^{4}\sin ^{2}a_1 }{8\left( {4\pi ^{2}-a_1^2 } \right) \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \hbox {i}\end{aligned}$$
(112)
$$\begin{aligned} \tau _{12}&= \frac{9\pi ^{4}\omega _1 \sin ^{2}a_1 }{4\left( {4\pi ^{2}-a_1^2 } \right) \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(113)
$$\begin{aligned} \varsigma _{11}&= 9\pi ^{4}\left[ 3\left( {2731a_1^4 -694a_1^2 \pi ^{2}+75\pi ^{4}} \right) \right. \nonumber \\&-\left( {a_1^4 -34a_1^2 \pi ^{2}+225\pi ^{4}} \right) \cos 4a_1 \nonumber \\&\quad \left. {+2048a_1^2 \left( {4a_1^2 -\pi ^{2}} \right) \cos a_1 } \right] \nonumber \\&\quad \Big / \left[ 16\left( {-4a_1^6 +137a_1^4 \pi ^{2}-934a_1^2 \pi ^{4}+225\pi ^{6}} \right) \right. \nonumber \\&\quad \times \left. \left( {\omega _1 +a_1 \gamma _0 } \right) \right] k_1^2 \hbox {i} \end{aligned}$$
(114)
$$\begin{aligned} \varsigma _{12}&= -9\pi ^{4}\omega _1 \cos ^{2}0.5a_1 \left[ \left( {a_1^4 -34a_1^2 \pi ^{2}+225\pi ^{4}} \right) \right. \nonumber \\&\quad \times \left( {2\cos 2a_1 -3\cos a_1 -\cos 3a_1 } \right) \nonumber \\&\quad \left. +2\left( {225\pi ^{4}+94a_1^2 \pi ^{2}-511a_1^4 } \right) \right] \nonumber \\&\quad \Big /\left[ \left( {-4a_1^6 +137a_1^4 \pi ^{2}-934a_1^2 \pi ^{4}+225\pi ^{6}} \right) \right. \nonumber \\&\quad \times \left. \left( {\omega _1 +a_1 \gamma _0 } \right) \right] k_1^2 \end{aligned}$$
(115)
$$\begin{aligned} \kappa _{21}&= -\frac{8a_1^2 \left( {a_1^2 +\pi ^{2}} \right) ^{2}+\pi ^{4}\sin ^{2}2a_1 }{4a_1^2 \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \hbox {i}\end{aligned}$$
(116)
$$\begin{aligned} \kappa _{22}&= \frac{\omega _1 \pi ^{4}\sin ^{2}2a_1 }{a_1^2 \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(117)
$$\begin{aligned}&\mu _{211} =\mu _{121} /2\nonumber \\&\quad =-\left\{ 9\left( {9a_1^6 -73a_1^4 \pi ^{2}-73a_1^2 \pi ^{4}+9\pi ^{6}} \right) ^{2}\right. \nonumber \\&\quad +1280a_1^2 \pi ^{4}\left( {73a_1^4 -18a_1^2 \pi ^{2}+9\pi ^{4}} \right) \nonumber \\&\quad +128a_1^2 \pi ^{4}\left[ 9\left( {9a_1^2 -\pi ^{2}} \right) ^{2}\cos a_1\right. \nonumber \\&\quad +\left. \left. \left( {a_1^2 -9\pi ^{2}} \right) ^{2}\cos 3a_1 \right] \right\} \nonumber \\&\quad \Bigg /{\left[ {18\left( {9a_1^4 -82a_1^2 \pi ^{2}+9\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) } \right] }k_1^2 i\nonumber \\ \end{aligned}$$
(118)
$$\begin{aligned} \mu _{212}&= \frac{256a_1^2 \pi ^{4}\omega _1 \cos ^{2}0.5a_1 \left[ {\left( {123a_1^4 -54a_1^2 \pi ^{2}+123\pi ^{4}} \right) +\left( {a_1^2 -9\pi ^{2}} \right) ^{2}\left( {\cos 2a_1 -2\cos a_1 } \right) } \right] }{3\left( {9a_1^4 -82a_1^2 \pi ^{2}+9\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(119)
$$\begin{aligned} \mu _{231}&= -9i\left\{ 25\left( {25a_1^6 -601a_1^4 \pi ^{2}-601a_1^2 \pi ^{4}+25\pi ^{6}} \right) ^{2}\right. \nonumber \\&+29952a_1^2 \pi ^{4}\left( {601a_1^4 -50a_1^2 \pi ^{2}+25\pi ^{4}} \right) \nonumber \\&\quad +1152a_1^2 \pi ^{4}\left[ 25\left( {25a_1^2 -\pi ^{2}} \right) ^{2}\cos a_1\right. \nonumber \\&\quad \left. \left. +\left( {a_1^2 -25\pi ^{2}} \right) ^{2}\cos 5a_1 \right] \right\} \nonumber \\&\quad /\left[ 50\left( {25a_1^4 -626a_1^2 \pi ^{2}+25\pi ^{4}} \right) ^{2}\right. \nonumber \\&\quad \times \left. \left( {\omega _1 +a_1 \gamma _0 } \right) \right] k_1^2\nonumber \\ \end{aligned}$$
(120)
$$\begin{aligned} \mu _{232}&= \frac{5184a_1^2 \pi ^{4}\omega _1 \left[ {4\left( {155\pi ^{4}+50a_1^2 \pi ^{2}-781a_1^4 } \right) -5\left( {25a_1^2 -\pi ^{2}} \right) ^{2}\cos a_1 +\left( {a_1^2 -25\pi ^{2}} \right) ^{2}\cos 5a_1 } \right] }{5\left( {25a_1^4 -626a_1^2 \pi ^{2}+25\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(121)
$$\begin{aligned} \xi _{21}&= -\frac{18\pi ^{4}\left[ {\left( {a_1^4 -34a_1^2 \pi ^{2}+225\pi ^{4}} \right) \cos 4a_1 -2048a_1^2 \left( {4a_1^2 -\pi ^{2}} \right) \cos a_1 -3\left( {2731a_1^4 -694a_1^2 \pi ^{2}+75\pi ^{4}} \right) } \right] }{32\left( {-4a_1^6 +137a_1^4 \pi ^{2}-934a_1^2 \pi ^{4}+225\pi ^{6}} \right) \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \hbox {i}\nonumber \\ \end{aligned}$$
(122)
$$\begin{aligned} \xi _{22}&= \frac{9\pi ^{4}\omega _1 \sin ^{2}2a_1 }{2\left( {4a_1^2 -\pi ^{2}} \right) \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(123)
$$\begin{aligned} \kappa _{31}&= -\frac{3\left[ {18a_1^2 \left( {a_1^2 +\pi ^{2}} \right) ^{2}+\pi ^{4}\sin ^{2}3a_1 } \right] }{8a_1^2 \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \hbox {i} \end{aligned}$$
(124)
$$\begin{aligned} \kappa _{32}&= \frac{9\omega _1 \pi ^{4}\sin ^{2}3a_1 }{4a_1^2 \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(125)
$$\begin{aligned}&\mu _{311}=-3\left\{ 8\left( 4a_1^6 -13a_1^4 \pi ^{2}-13a_1^2 \pi ^{4}\right. +4\pi ^{6}\right) ^{2}\nonumber \\&\qquad +45a_1^2 \pi ^{4}\left( {13a_1^4 -8a_1^2 \pi ^{2}+4\pi ^{4}} \right) \nonumber \\&\qquad -9a_1^2 \pi ^{4}\left[ 4\left( {4a_1^2 -\pi ^{2}} \right) ^{2}\cos 2a_1\right. \nonumber \\&\qquad \left. \left. +\left( {a_1^2 -4\pi ^{2}} \right) ^{2}\cos 4a_1 \right] \right\} \nonumber \\&\qquad \Big /\left[ 32\left( {4a_1^4 -17a_1^2 \pi ^{2}+4\pi ^{4}} \right) ^{2}\right. \nonumber \\&\qquad \left. \times \left( {\omega _1 +a_1 \gamma _0} \right) \right] k_1^2 \hbox {i} \end{aligned}$$
(126)
$$\begin{aligned} \mu _{312}&= \frac{27a_1^2 \pi ^{4}\omega _1 \sin ^{2}a_1 \left[ {17a_1^4 -16a_1^2 \pi ^{2}+17\pi ^{4}+\left( {a_1^2 -4\pi ^{2}} \right) ^{2}\cos 2a_1 } \right] }{2\left( {4a_1^4 -17a_1^2 \pi ^{2}+4\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(127)
$$\begin{aligned}&\mu _{321} ={2\mu _{231} }/3\nonumber \\&\quad =-3\left\{ 25\left( {25a_1^6 -601a_1^4 \pi ^{2}-601a_1^2 \pi ^{4}+25\pi ^{6}} \right) ^{2}\right. \nonumber \\&\qquad +29952a_1^2 \pi ^{4}\left( {601a_1^4 -50a_1^2 \pi ^{2}+25\pi ^{4}} \right) \nonumber \\&\qquad +1152a_1^2 \pi ^{4}\left[ 25\left( {25a_1^2 -\pi ^{2}} \right) ^{2}\cos a_1\right. \nonumber \\&\qquad \left. \left. +\left( {a_1^2 -25\pi ^{2}} \right) ^{2}\cos 5a_1 \right] \right\} \nonumber \\&\qquad \Big /\left[ 25\left( {25a_1^4 -626a_1^2 \pi ^{2}+25\pi ^{4}} \right) ^{2}\right. \nonumber \\&\qquad \left. \times \left( {\omega _1 +a_1 \gamma _0 } \right) \right] k_1^2 \hbox {i} \end{aligned}$$
(128)
$$\begin{aligned} \mu _{322}&= \frac{3456a_1^2 \pi ^{4}\omega _1 \left[ {6\left( {521a_1^4 -50a_1^2 \pi ^{2}+105\pi ^{4}} \right) +5\left( {25a_1^2 -\pi ^{2}} \right) ^{2}\cos a_1 \!+\!\left( {a_1^2 -25\pi ^{2}} \right) ^{2}\cos 5a_1 } \right] }{5\left( {25a_1^4 -626a_1^2 \pi ^{2}\!+\!25\pi ^{4}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(129)
$$\begin{aligned} \upsilon _{31}&= -\frac{3\pi ^{4}\sin ^{2}a_1 }{8\left( {4\pi ^{2}-a_1^2 } \right) \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \hbox {i}\end{aligned}$$
(130)
$$\begin{aligned} \upsilon _{32}&= \frac{3\pi ^{4}\omega _1 \sin ^{2}a_1 }{4\left( {4\pi ^{2}-a_1^2 } \right) \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \end{aligned}$$
(131)
$$\begin{aligned} \varsigma _{31}&= \frac{6\pi ^{4}\left[ {3\left( {2731a_1^4 -694a_1^2 \pi ^{2}+75\pi ^{4}} \right) +2048a_1^2 \left( {4a_1^2 -\pi ^{2}} \right) \cos a_1 -\left( {a_1^4 -34a_1^2 \pi ^{2}+225\pi ^{4}} \right) \cos 4a_1 } \right] }{32\left( {-4a_1^6 +137a_1^4 \pi ^{2}-934a_1^2 \pi ^{4}+225\pi ^{6}} \right) \left( {\omega _1 +a_1 \gamma _0 } \right) }k_1^2 \hbox {i}\nonumber \\ \end{aligned}$$
(132)
$$\begin{aligned} \varsigma _{32}&= -3\pi ^{4}\omega _1 \cos ^{2}0.5a_1 \left[ -\left( {a_1^4 - 34a_1^2 \pi ^{2}+225\pi ^{4}} \right) \right. \nonumber \\&\quad \times \left( {3\cos a_1 -2\cos 2a_1 +\cos 3a_1 }\right) \nonumber \\&\quad \left. +18\left( {57a_1^4 -18a_1^2 \pi ^{2}+25\pi ^{4}} \right) \right] \nonumber \\&\quad \Big /\left[ \left( {-4a_1^6 +137a_1^4 \pi ^{2}-934a_1^2 \pi ^{4}+225\pi ^{6}} \right) \right. \nonumber \\&\quad \times \left. \left( {\omega _1 +a_1 \gamma _0 } \right) \right] k_1^2 \end{aligned}$$
(133)

Appendix B

$$\begin{aligned}&\delta _2^\mathrm{R}=4\pi ^{2}\nonumber \\&\quad \times \frac{a_1 \omega _1 \left( {a_1^2 -9\pi ^{2}} \right) +\sin a_1 \left[ {\omega _1 \left( {a_1^2 +9\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -9\pi ^{2}} \right) } \right] }{\left( {a_1^2 -9\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(134)
$$\begin{aligned}&\delta _2^\mathrm{I}=-\frac{4\pi ^{2}\left( {1+\cos a_1 } \right) \left[ {\omega _1 \left( {a_1^2 +9\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -9\pi ^{2}} \right) } \right] }{\left( {a_1^2 -9\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(135)
$$\begin{aligned}&\chi _1^\mathrm{R}=-2\pi ^{2}\nonumber \\&\quad \times \frac{a_1 \omega _1 \left( {a_1^2 -9\pi ^{2}} \right) +\sin a_1 \left[ {\omega _1 \left( {a_1^2 +9\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -9\pi ^{2}} \right) } \right] }{\left( {a_1^2 -9\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(136)
$$\begin{aligned}&\chi _1^\mathrm{I}\nonumber \\&\quad =-\frac{2\pi ^{2}\left( {1+\cos a_1 } \right) \left[ {\omega _1 \left( {a_1^2 +9\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -9\pi ^{2}} \right) } \right] }{\left( {a_1^2 -9\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(137)
$$\begin{aligned}&\delta _3^\mathrm{R}=18\pi ^{2}\nonumber \\&\quad \times \frac{a_1 \omega _1 \left( {a_1^2 -25\pi ^{2}} \right) +\sin a_1 \left[ {\omega _1 \left( {a_1^2 +25\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -25\pi ^{2}} \right) } \right] }{\left( {a_1^2 -25\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(138)
$$\begin{aligned}&\delta _3^\mathrm{I}\nonumber \\&\quad =-\frac{18\pi ^{2}\left( {1+\cos a_1 } \right) \left[ {\omega _1 \left( {a_1^2 +25\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -25\pi ^{2}} \right) } \right] }{\left( {a_1^2 -25\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(139)
$$\begin{aligned}&\chi _2^\mathrm{R}=-12\pi ^{2}\nonumber \\&\quad \times \frac{a_1 \omega _1 \left( {a_1^2 -25\pi ^{2}} \right) +\sin a_1 \left[ {\omega _1 \left( {a_1^2 +25\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -25\pi ^{2}} \right) } \right] }{\left( {a_1^2 -25\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(140)
$$\begin{aligned}&\chi _2^\mathrm{I}\nonumber \\&\quad =-\frac{24\pi ^{2}\cos ^{2}0.5a_1 \left[ {\omega _1 \left( {a_1^2 +25\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -25\pi ^{2}} \right) } \right] }{\left( {a_1^2 -25\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) } \end{aligned}$$
(141)

Appendix C

$$\begin{aligned}&\delta _3^\mathrm{R}=9\pi ^{2}\nonumber \\&\quad \times \frac{2a_1 \omega _1 \left( {a_1^2 -4\pi ^{2}} \right) -\sin 2a_1 \left[ {\omega _1 \left( {a_1^2 +4\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -4\pi ^{2}} \right) } \right] }{8\left( {a_1^2 -4\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(142)
$$\begin{aligned}&\delta _3^\mathrm{I} =-\frac{9\pi ^{2}\sin ^{2}a_1 \left[ {\omega _1 \left( {a_1^2 +4\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -4\pi ^{2}} \right) } \right] }{4\left( {a_1^2 -4\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(143)
$$\begin{aligned}&\bar{{\delta }}_1^\mathrm{R} =\pi ^{2}\frac{2a_1 \omega _1 -\sin 2a_1 \left( {\omega _1 -2a_1 \kappa \gamma _0 } \right) }{8a_1^2 \left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(144)
$$\begin{aligned}&\bar{{\delta }}_1^\mathrm{I} =\frac{\pi ^{2}\sin ^{2}a_1 \left( {\omega _1 -2a_1 \kappa \gamma _0 } \right) }{4a_1^2 \left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(145)
$$\begin{aligned}&\chi _1^\mathrm{R} =-3\pi ^{2}\nonumber \\&\quad \times \frac{2a_1 \omega _1 \left( {a_1^2 -4\pi ^{2}} \right) -\sin 2a_1 \left[ {\omega _1 \left( {a_1^2 +4\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -4\pi ^{2}} \right) } \right] }{8\left( {a_1^2 -4\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(146)
$$\begin{aligned}&\chi _1^\mathrm{I} =-\frac{3\pi ^{2}\sin ^{2}a_1 \left[ {\omega _1 \left( {a_1^2 +4\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {a_1^2 -4\pi ^{2}} \right) } \right] }{4\left( {a_1^2 -4\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) } \end{aligned}$$
(147)

Appendix D

$$\begin{aligned}&\bar{{\delta }}_2^\mathrm{R} =4\pi ^{2}\nonumber \\&\quad \times \frac{3a_1 \omega _1 \left( {9a_1^2 -\pi ^{2}} \right) +\sin 3a_1 \left[ {\omega _1 \left( {9a_1^2 +\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {9a_1^2 -\pi ^{2}} \right) } \right] }{3\left( {9a_1^2 -\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(148)
$$\begin{aligned}&\bar{{\delta }}_2^\mathrm{I} =\frac{8\pi ^{2}\cos ^{2}\left( {{3a_1 }/2} \right) \left[ {\omega _1 \left( {9a_1^2 +\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {9a_1^2 -\pi ^{2}} \right) } \right] }{3\left( {9a_1^2 -\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(149)
$$\begin{aligned}&\bar{{\delta }}_1^\mathrm{R} =2\pi ^{2}\nonumber \\&\quad \times \frac{3a_1 \omega _1 \left( {9a_1^2 -\pi ^{2}} \right) +\sin 3a_1 \left[ {\omega _1 \left( {9a_1^2 +\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {9a_1^2 -\pi ^{2}} \right) } \right] }{3\left( {9a_1^2 -\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) }\end{aligned}$$
(150)
$$\begin{aligned}&\bar{{\delta }}_1^\mathrm{I} =\frac{4\pi ^{2}\cos ^{2}\left( {{3a_1 }/2} \right) \left[ {\omega _1 \left( {9a_1^2 +\pi ^{2}} \right) -2a_1 \kappa \gamma _0 \left( {9a_1^2 -\pi ^{2}} \right) } \right] }{3\left( {9a_1^2 -\pi ^{2}} \right) ^{2}\left( {\omega _1 +a_1 \gamma _0 } \right) } \end{aligned}$$
(151)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, LQ., Tang, YQ. & Zu, J.W. Nonlinear transverse vibration of axially accelerating strings with exact internal resonances and longitudinally varying tensions. Nonlinear Dyn 76, 1443–1468 (2014). https://doi.org/10.1007/s11071-013-1220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1220-1

Keywords

Navigation