Advertisement

Nonlinear Dynamics

, Volume 76, Issue 2, pp 1087–1097 | Cite as

Complex function projective synchronization of complex chaotic system and its applications in secure communication

  • Shutang Liu
  • Fangfang ZhangEmail author
Original Paper

Abstract

To develop secure communication, the paper presents complex function projective synchronization (CFPS) of complex chaotic systems. Aimed to coupled complex chaotic system, the control law is derived to make the complex state vectors asymptotically synchronize up to a desired complex function matrix. Based on CFPS, a novel communication scheme is further designed in theory. Its main idea is chaotic masking in essence, but the transmitted signal is the derivative of the product of the information signal and chaotic signal. As the complex scaling functions are arbitrary and more unpredictable than real scaling functions, and the product and derivative operations of complex numbers are complicated, the possibility that an interceptor extracts the information from the transmitted signal is greatly reduced. The communication system can transmit analog signal and digital symbols with fast transmission and high security, especially low bit-error rate and the strong robustness to noise for digital symbols. The corresponding numerical simulations are performed to verify and illustrate the analytical results.

Keywords

Complex function projective synchronization Scaling function matrix  Complex chaotic systems Secure communication 

Notes

Acknowledgments

The work was partially supported by the National Nature Science Foundation of China (numbers 61273088, 10971120, 61001099) and the Nature Science Foundation of Shandong province (number ZR2010FM010). The authors would like to thank the editors and the reviewers for their constructive comments and suggestions which improved the quality of the paper.

References

  1. 1.
    Fowler, A.C., Gibbon, J.D.: The complex Lorenz equations. Physica D 4(2), 139–163 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization of complex Chen and L\(\ddot{u}\) systems. Int. J. Bifurcat. Chaos 17(12), 4295–4308 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Illing, L.: Digital communication using chaos and nonlinear dynamics. Nonlinear Anal. 71(12), 2958–2964 (2009)CrossRefGoogle Scholar
  4. 4.
    Mahmoud, G.M., Mahmoud, E.E.: Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dyn. 61(1–2), 141–152 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62(4), 875–882 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, S.T., Liu, P.: Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal. RWA 12(6), 3046–3055 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Liu, P., Liu, S.T.: Anti-synchronization between different chaotic complex systems. Phys. Scr. 83(6), 065006 (2011)CrossRefGoogle Scholar
  8. 8.
    Mahmoud, G.M., Mahmoud, E.E.: Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. 67(2), 1613–1622 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Mahmoud, G.M., Mahmoud, E.E.: Synchronization and control of hyperchaotic complex Lorenz system. Math. Comput. Simul. 80(12), 2286–2296 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Liu, P., Liu, S.T.: Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances. Nonlinear Dyn. 70(1), 585–599 (2012)CrossRefGoogle Scholar
  11. 11.
    Mahmoud, E.E.: Modified projective phase synchronization of chaotic complex nonlinear systems. Math. Comput. Simul. 89, 69–85 (2013)CrossRefGoogle Scholar
  12. 12.
    Chee, C.Y., Xu, D.L.: Chaos-based M-nary digital communication technique using controlled projective synchronization. IEE Proc. Circuits Dev. Syst. 153(4), 357–360 (2006)Google Scholar
  13. 13.
    Mahmoud, G.M., Mahmoud, E.E., Arafa, A.A.: On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications. Phys. Scr. 87, 055002 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhu, H.: Adaptive modified function projective synchronization of a new chaotic complex system with uncertain parameters. In: ICCRD: 3rd International Conference on Computer Research Development 4, Shanghai, pp. 451–455 (2011)Google Scholar
  15. 15.
    Liu, P., et al.: Adaptive modified function projective synchronization of general uncertain chaotic complex systems. Phys. Scr. 85(3), 035005 (2012)CrossRefGoogle Scholar
  16. 16.
    Du, H.Y., Zeng, Q.S., et al.: Function projective synchronization in coupled chaotic systems. Nonlinear Anal. RWA 11(2), 705–712 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Zhou, P., Zhu, W.: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal. RWA 12(2), 811–816 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Sudheer, K.S., Sabir, M.: Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4058–4064 (2010)CrossRefGoogle Scholar
  19. 19.
    Zheng, S., Dong, G.G., Bi, Q.S.: Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3547–3556 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Fu, G.Y.: Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2602–2608 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Zheng, S.: Adaptive modified function projective synchronization of unknown chaotic systems with different order. Appl. Math. Comput. 218(10), 5891–5899 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Yu, Y.G., Li, H.X.: Adaptive generalized function projective synchronization of uncertain chaotic systems. Nonlinear Anal. RWA 11(4), 2456–2464 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Wu, X.J., Lu, H.T.: Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3005–3021 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71(1), 65–68 (1993)CrossRefGoogle Scholar
  26. 26.
    VanWiggeren, G.D., Roy, R.: Communication with chaotic lasers. Science 279(5354), 1198–1200 (1998)CrossRefGoogle Scholar
  27. 27.
    VanWiggeren, G.D., Roy, R.: Optical communication with chaotic waveforms. Phys. Rev. Lett. 81(16), 3547–3550 (1998)CrossRefGoogle Scholar
  28. 28.
    Xu, D.L., Chee, C.Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. Phys. Rev. E 66(4), 046218 (2002)CrossRefGoogle Scholar
  29. 29.
    Moskalenko, O.I., Koronovskii, A.A., Hramov, A.E.: Generalized synchronization of chaos for secure communication: remarkable stability to noise. Phys. Lett. A 374(29), 2925–2931 (2010)CrossRefzbMATHGoogle Scholar
  30. 30.
    Zaher, A.A., Abu-Rezq, A.: On the design of chaos-based secure communication systems. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3721–3737 (2011)Google Scholar
  31. 31.
    Eisencraft, M., et al.: Chaos-based communication systems in non-ideal channels. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4707–4718 (2012) Google Scholar
  32. 32.
    Tao, G.: A simple alternative to the Barbalat lemma. IEEE Trans. Autom. Control 42(5), 698 (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Control Science and EngineeringShandong UniversityJinan China

Personalised recommendations