Skip to main content
Log in

Nonlinear control for teleoperation systems with time varying delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we introduce delay-dependent control strategies for bilateral teleoperation systems in the presence of passive and constant input forces under time varying delay. We first design teleoperation systems where the local and remote sites are coupled by position signals of the master and slave manipulator. The design also combined undelayed position and velocity signals with nonlinear adaptive control terms to deal with the parametric uncertainties associated with the dynamical model of the master and slave manipulator. Then, we develop teleoperators by delaying position and velocity signals of the master and slave manipulator. Using Lyapunov–Krasovskii function, delay-dependent stability and tracking conditions for both teleoperators are developed in the presence of symmetrical and unsymmetrical time varying delays. The stability conditions are established in the presence of passive and constant human and environment interaction forces with the master and slave manipulators. Finally, simulation results are presented to demonstrate the validity of the theoretical development of the proposed designs for real-time teleoperation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lawrence, D.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9, 624–637 (1993)

    Article  Google Scholar 

  2. Sheridan, T.: Telerobotics. Automatica 25, 487–507 (1989)

    Article  Google Scholar 

  3. Marescaus, J., et al.: Translantic robot-assisted telesurgery. Nature 413, 379–380 (2001)

    Article  Google Scholar 

  4. Batlle, J., Ridao, P., Salvi, J.: Integration of a teleoperated robotic arm with vision systems using CORBA compatible software. In: Proceedings of 30th International Symposium on Automotive Technology and Automation, Florence, Italy, pp. 371–378 (1997)

  5. Ben-Porat, O., Shoham, M., Meyer, J.: Control design and task performance in endoscopic teleoperation. Presence 9, 256–267 (2000)

    Article  Google Scholar 

  6. Arbeille, P., Ruiz, J., Chevillot, M., Perrotin, F., Herve, P., Vieyres, P., Poisson, G.: Teleoperated robotic arm for echographic diagnosis in obstetrics and gynecology. Ultrasound Obstet. Gynecol. 24, 242–246 (2004)

    Article  Google Scholar 

  7. Arbeille, P., Poisson, G., Vieyres, P., Ayoub, J., Porcher, M., Boulay, J.: Echographic examination in isolated sites controlled from an expert center using a 2D echograph guided by a teleoperated robotic arm. Ultrasound Med. Biol. 29, 993–1000 (2003)

    Article  Google Scholar 

  8. Intuitive Surgical: Da Vinci Surgical System. http://www.intusurg.com/products/da-vinci.html

  9. International Submarine Engineering Ltd.: ATOMAutonomous/Teleoperated Operations Manipulator. [Online].

  10. Manganelli, R., Chinello, F., Formaglio, A., Prattichizzo, D.: A teleoperation system for micro-invasive brain surgery. Paladyn J. Behav. Robot. 1(4), 198–203 (2011)

    Article  Google Scholar 

  11. Janabi-Sharifi, F., Hassanzadeh, I.: Experimental analysis of mobile-robot teleoperation via shared impedance control. IEEE Trans. Syst. Man Cybern. B 41, 591–606 (2011)

    Google Scholar 

  12. Lam, T. M., Mulder, M., Paassen, M. M., Collision avoidance in UAV tele-operation with time delay. In: Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, pp. 997–1002 (2007)

  13. Arcara, P., Melchiorri, C.: Control schemes for teleoperation with time delay: a comparative study. Robot. Auton. Syst. 38, 49–64 (2002)

    Article  MATH  Google Scholar 

  14. Hokayem, P., Spong, M.: Bilateral teleoperation: an historical survey. Automatica 42, 2035–2057 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ferrell, W.: Delayed force feedback. Hum. Factors 8, 449–455 (1966)

    Google Scholar 

  16. Polushin I.: Force reflecting teleoperation over wide-area networks. Ph.D. Thesis, Carleton University (2009)

  17. Alise, M., et al.: On extending the wave variable method to multiple-DOF teleoperation systems. IEEE/ASME Trans. Mechatron. 14, 55–63 (2009)

    Article  Google Scholar 

  18. Munir, S., Book, W.: Internet-based teleoperation using wave variables with prediction. IEEE/ASME Trans. Mechatron. 7, 124–133 (2002)

    Article  Google Scholar 

  19. Hua, C., Liu, P.: Convergence analysis of teleoperation systems with unsymmetric time-varying delays. IEEE Trans. Circuits Syst. II 56, 240–244 (2009)

    Article  Google Scholar 

  20. Niemeyer, G., Slotine, J.: Telemanipulation with time delays. Int. J. Robot. Res. 23, 873–890 (2004)

    Article  Google Scholar 

  21. Anderson, R., Spong, M.: Asymptotic stability of force reflecting teleoperators with time delay. Int. J. Robot. Res. 11, 135–149 (1992)

    Article  Google Scholar 

  22. Lozano, R., Chopra, N., Spong, M.: Convergence analysis of bilateral teleoperation with constant human input. In: Proceedings of American Control Conference, pp. 1443–1448 (2007)

  23. Forouzantabar, A., Talebi, H.A., Sedigh, A.K.: Adaptive neural network control of bilateral teleoperation with constant time delay. Nonlinear Dyn. 67, 1123–1134 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Chopra, N., Spong, M., Hirche, S., Buss, M.: Bilateral teleoperation over the internet: the time varying delay problem. In: Proceedings of the American Control Conference, pp. 155–160 (2003)

  25. Pan, Y.-J., Canudas-de-Wit, C., Sename, O.: A new predictive approach for bilateral teleoperation with applications to drive-by-wire systems. IEEE Trans. Robot. 22, 1146–1162 (2006)

    Article  Google Scholar 

  26. Anderson, R., Spong, M.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34, 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  27. Park, J., Cho, H.: Sliding mode control of bilateral teleoperation systems with force-reflection on the internet. In: Proceedings of the EEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1187–1192 (2000)

  28. Polushin, I., Liu, P., Lung, C.-H.: On the model-based approach to nonlinear networked control systems. Automatica 44, 2409–2414 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Oboe, R.: Web-interfaced, force-reflecting teleoperation systems. IEEE Trans. Ind. Electron. 48, 1257–1265 (2001)

    Article  Google Scholar 

  30. Leung, G., Francis, B., Apkarian, J.: Bilateral controller for teleoperators with time delay via mu-synthesis. IEEE Trans. Robot. Autom. 11, 105–116 (1995)

    Article  Google Scholar 

  31. Huijun, L., Aiguo, S.: Virtual environment modeling and correction for force reflecting teleoperation with time delay. IEEE Trans. Ind. Electron. 54, 1227–1233 (2007)

    Article  Google Scholar 

  32. Lee, D., Spong, M.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22, 269–281 (2006)

    Article  Google Scholar 

  33. Lee, D., Huang, K.: Passive-set-position-modulation framework for interactive robotic systems. IEEE Trans. Robot. 26, 354–369 (2010)

    Article  Google Scholar 

  34. Wu, J., Shi, Y., Huang, J., Constantinescu, D.: Stochastic stabilization for bilateral teleoperation over networks with probabilistic delays. Mechatronics 22, 1050–1059 (2012)

    Article  Google Scholar 

  35. Jazayeri, A., Tavakoli, M.: Absolute stability analysis of sampled-data scaled bilateral teleoperation systems. Control Eng. Pract. 21(8), 1053–1064 (2013)

    Article  Google Scholar 

  36. Yana, Y. Hua, C.-C., Guan, X.: Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system fuzzy systems. IEEE Trans. Fuzzy Syst. 99, to appear (2013)

  37. Hua, C.-C., Yang, Y., Guan, X.: Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay. Neurocomputing 113, 204212 (2013)

    Article  Google Scholar 

  38. Yang, X., Hua, C.-C., Guan, X.: New stability criteria for networked teleoperation system. Inform. Sci. 233(1), 244–254 (2013)

    Article  MathSciNet  Google Scholar 

  39. Ye, Y., Pan, Y.-J.: Hilliard T: Bilateral teleoperation with time-varying delay: a communication channel passification approach. IEEE/ASME Trans. Mechatron. 18(4), 1431–1434 (2013)

    Article  Google Scholar 

  40. Huang, J., Shi, Y., Wu, J.: Transparent virtual coupler design for networked haptic systems with a mixed virtual wall. IEEE/ASME Trans. Mechatron. 17, 480–487 (2012)

    Article  Google Scholar 

  41. Li, Z., et al.: Neural-adaptive control of single-master multiple slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainty. IEEE Trans. Neural Network and Learning. System 24(9), 1400–1413 (2013)

    Google Scholar 

  42. Li, Z., et al.: Trilateral teleoperation of adaptive fuzzy force/motion control for nonlinear teleoperators with communication random delays. IEEE Trans. Fuzzy Syst. 21(4), 610–624 (2013)

    Article  Google Scholar 

  43. Li, Z., et al.: Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Trans. Fuzzy Syst. 19(4), 745–757 (2011)

    Article  Google Scholar 

  44. Li, Z., et al.: Adaptive control of bilateral teleoperation with unsymmetrical time-varying delays. Int. J. Innov. Comput. Inform. Control 9(2), 753–767 (2013)

    Google Scholar 

  45. Haidegger, T., Kovacs, L., Precup, R.-E., Benyo, B., Benyo, Z., Preitl, S.: Simulation and control for telerobots in space medicine. Acta Astronaut. 181(1), 390–402 (2012)

    Article  Google Scholar 

  46. Haidegger, T., Kovacs, L., Precup, R.-E., Benyo, B., Benyo, Z.: Controller design solutions for long distance telesurgical applications. Int. J. Artif. Intell. 6(S11), 48–71 (2011)

    Google Scholar 

  47. Haidegger, T., Kovacs, L., Precup, R.-E., Benyo, B., Benyo, Z.: Cascade control for telerobotic systems serving space medicine. In: 18th IFAC World Congress, Italy, August 28–September 2, pp. 3759–3764 (2011)

  48. Burns, C., Wang, R.F., Stipanovic, D.: A study of human and receding horizon controller performance of a remote navigation task with obstacles and feedback delays. Paladyn J. Behav. Robot. 2, 44–63 (2011)

    Article  Google Scholar 

  49. Burns, C., Zearing, J., Wang, R.F., Stipanovic, D.M.: Autonomous and semiautonomous control simulator. In: Proceedings of the 2010 AAAI Spring Symposium, Technical, Report SS-10-04

  50. Burns, C.R., Wang, R.F., Stipanovic, D.M.: Study of the impact of delay on human remote navigators with application to receding horizon control. Paladyn J. Behav. Robot. 3(2), 63–74 (2012)

    Google Scholar 

  51. Widyotriatmo, A., Pamosoaji, A.K., Hong, K.-S.: Control architecture of an autonomous material handling vehicle. Int. J. Artif. Intell. 10(S13), 139–153 (2013)

    Google Scholar 

  52. Burridge, R.R., Hambuchen, K.A.: Using prediction to enhance remote robot supervision across time delay. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5628–5634 (2009)

  53. Han, C., Liu, X., Zhang, H.: Robust model predictive control for continuous uncertain systems with state delay. J. Control Theory Appl. 6, 189–194 (2008)

    Google Scholar 

  54. Kelly, R., Santibanez, V., Loria, A.: Control of Robot Manipulators in Joint Space (Advanced Textbooks in Control and Signal Processing). Springer-Verlag, New York (2005)

    Google Scholar 

  55. Islam, S., Liu, P.X., El Saddik, A.: Model based telehaptic system with time varying communication delay. In: Proceedings of IEEE International Conference on Virtual Environments, Human–Computer Interfaces and Measurement Systems, September 19–21, Ottawa, Canada, pp. 1–6 (2011)

  56. Islam, S., Liu, P.X., El Saddik, A.: Teleoperation systems with symmetrical and unsymmetrical time varying communication delay. IEEE Trans. Instrum. Meas. 62(11), 2943–2953 (2013)

    Article  Google Scholar 

  57. Schwartz, H., Islam, S.: An evaluation of adaptive robot control via velocity estimated feedback. In: Proceedings on Control and Applications Montreal, Quebec, May 30–June 1, pp. 125–133 (2007)

  58. Islam, S.: Lyapunov-based hybrid control for robust trajectory tracking of robotic manipulator. Ph.D. Thesis, OCIECE, Carleton University, Ottawa, Canada (2010)

Download references

Acknowledgments

Authors thank anonymous editor, associate editor, and reviewers for their thoughts and suggestion on our original submission which definitely improves the quality and presentation of this paper. This work is partially supported in part by Natural Sciences and Engineering Research Council of Canada (NSERC) Research Fellowship, Canada Research Chairs Program and University of Ottawa Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, S., Liu, P.X. & El Saddik, A. Nonlinear control for teleoperation systems with time varying delay. Nonlinear Dyn 76, 931–954 (2014). https://doi.org/10.1007/s11071-013-1179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1179-y

Keywords

Navigation