Skip to main content
Log in

Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear aeroelastic characteristics of sandwich beams with pyramidal lattice core are investigated, and the active flutter control of the nonlinear structural system is also studied using the piezoelectric actuator/sensor pair. In the structural modeling, Reddy’s third-order shear deformation theory is applied. Aerodynamic pressure is evaluated by the supersonic piston theory. Hamilton’s principle and the assumed mode method are used to derive the equation of motion. The proportional feedback and the optimal H control methods are performed to design the controller. In the robust control, the uncertainty caused by omitting the nonlinear terms of the control equation is taken into account, and the mixed sensitivity method is used to solve the problem. The nonlinear aeroelastic property of the sandwich beam is analyzed and is compared with that of the equivalent isotropic beam with the same weight to show the superior aeroelastic characteristics of the lattice sandwich beam. Controlled vibration responses under the two different controllers are calculated and compared. Simulation results show that the robust controller is much more effective than the proportional feedback controller in the flutter suppression of the nonlinear sandwich beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hoffmann, F., Lu, T.J., Hodson, H.P.: Heat transfer performance of Kagome structures. In: The 8th UK National Heat Transfer Conference, Oxford, UK, pp. 9–10 (2003)

    Google Scholar 

  2. Lu, T.J.: Heat transfer efficiency of metal honeycombs. Int. J. Heat Mass Transf. 42(11), 2031–2040 (1998)

    Article  Google Scholar 

  3. Xue, Z.Y., Hutchinson, J.W.: Preliminary assessment of sandwich plates subject to blast loads. Int. J. Mech. Sci. 45(4), 685–705 (2003)

    Article  Google Scholar 

  4. Kim, T.: Fluid-flow and heat-transfer in a lattice-frame material. Ph.D. thesis, Department of Engineering, University of Cambridge (2003)

  5. ElRaheb, M., Wagner, P.: Transmission of sound across a truss-like periodic panel: 2D analysis. J. Acoust. Soc. Am. 101(6), 2176–2183 (1997)

    Article  Google Scholar 

  6. Shiau, L.C., Kuo, S.Y.: Free vibration of thermally buckled composite sandwich plates. J. Vib. Acoust. 128, 1–7 (2006)

    Article  Google Scholar 

  7. Matsunaga, H.: Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading. Compos. Struct. 77(2), 249–262 (2007)

    Article  MathSciNet  Google Scholar 

  8. Cui, X.D., Zhao, L.M., Wang, Z.H., Zhao, H., Fang, D.N.: Dynamic response of metallic lattice sandwich structures to impulsive loading. Int. J. Impact Eng. 43, 1–5 (2012)

    Article  Google Scholar 

  9. Ruzzene, M.: Vibration and sound radiation of sandwich beams with honeycomb truss core. J. Sound Vib. 277(4), 741–763 (2004)

    Article  Google Scholar 

  10. Lou, J., Ma, L., Wu, L.Z.: Free vibration analysis of simply supported sandwich beams with lattice truss core. Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 177(19), 1712–1716 (2012)

    Article  Google Scholar 

  11. Yu, S.D., Cleghorn, W.L.: Free flexural vibration analysis of symmetric honeycomb panels. J. Sound Vib. 284(4), 189–204 (2005)

    Article  Google Scholar 

  12. Lok, T.S., Cheng, Q.H.: Free and forced vibration of simply supported, orthotropic sandwich panel. Comput. Struct. 79(3), 301–312 (2001)

    Article  Google Scholar 

  13. Cielecka, I., Jedrysiak, J.: A non-asymptotic model of dynamics of honeycomb lattice-type plates. J. Sound Vib. 296(1), 130–149 (2006)

    Article  Google Scholar 

  14. Pourtakdoust, S.H., Fazelzadeh, S.A.: Chaotic analysis of nonlinear viscoelastic panel flutter in supersonic flow. Nonlinear Dyn. 32(4), 387–404 (2004)

    Article  Google Scholar 

  15. Sipcic, S.R.: The chaotic response of a fluttering panel: the influence of maneuvering. Nonlinear Dyn. 1(3), 243–264 (1990)

    Article  Google Scholar 

  16. Gee, D.J.: Numerical continuation applied to panel flutter. Nonlinear Dyn. 22(3), 271–280 (2000)

    Article  MATH  Google Scholar 

  17. Shiau, L.C., Lu, L.T.: Nonlinear flutter of two-dimensional simply supported symmetric composite laminated plates. J. Aircr. 29(1), 140–145 (1992)

    Article  Google Scholar 

  18. Haddadpour, H., Navazi, H.M., Shadmehri, F.: Nonlinear oscillations of a fluttering functionally graded plate. Compos. Struct. 79(2), 242–250 (2007)

    Article  Google Scholar 

  19. Li, F.M., Song, Z.G.: Flutter and thermal buckling control for composite laminated panels in supersonic flow. J. Sound Vib. 332(22), 5678–5695 (2007)

    Article  Google Scholar 

  20. Mahato, P.K., Maiti, D.K.: Flutter control of smart composite structures in hygrothermal environment. J. Aerosp. Eng. 23(4), 317–326 (2010)

    Article  Google Scholar 

  21. Mahato, P.K., Maiti, D.K.: Aeroelastic analysis of smart composite structures in hygro-thermal environment. Compos. Struct. 92(4), 1027–1038 (2010)

    Article  Google Scholar 

  22. Li, Q.Q., Mei, C., Huang, J.K.: Suppression of thermal postbuckling and nonlinear panel flutter motions using piezoelectric actuators. AIAA J. 45(8), 1861–1873 (2007)

    Article  Google Scholar 

  23. Song, Z.G., Li, F.M.: Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate. Compos. Struct. 94(2), 702–713 (2012)

    Article  Google Scholar 

  24. Song, Z.G., Li, F.M.: Optimal locations of piezoelectric actuators and sensors for supersonic flutter control of composite laminated panels. J. Vib. Control. doi:10.1177/1077546313480538

  25. Li, F.M.: Active aeroelastic flutter suppression of a supersonic plate with piezoelectric material. Int. J. Eng. Sci. 51, 190–203 (2012)

    Article  Google Scholar 

  26. Song, Z.G., Li, F.M.: Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs. Smart Mater. Struct. 20(5), 055013 (2011)

    Article  MathSciNet  Google Scholar 

  27. Queheillalt, D.T., Murty, Y., Wadley, H.: Mechanical properties of an extruded pyramidal lattice truss sandwich structure. Scr. Mater. 58(1), 76–79 (2008)

    Article  Google Scholar 

  28. Ramesh, K.K., Narayanan, S.: Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs. Smart Mater. Struct. 17(5), 055008 (2008)

    Article  Google Scholar 

  29. Ray, M.C., Batra, R.C.: Vertically reinforced 1–3 piezoelectric composites for active damping of functionally graded plates. AIAA J. 45(7), 1779–1783 (2007)

    Article  Google Scholar 

  30. Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631–641 (2006)

    Article  Google Scholar 

  31. Kim, H.W., Kim, J.H.: Effect of piezoelectric damping layers on the dynamic stability of plate under a thrust. J. Sound Vib. 284(3), 597–612 (2005)

    Article  Google Scholar 

  32. Shin, W.H., Oh, I.K., Han, J.H., Lee, I.: Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments. J. Sound Vib. 296(1), 99–116 (2006)

    Article  Google Scholar 

  33. Prakash, T., Ganapathi, M.: Supersonic flutter characteristics of functionally graded flat panels including thermal effects. Compos. Struct. 72(1), 10–18 (2006)

    Article  Google Scholar 

  34. Gao, J.X., Liao, W.H.: Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments. J. Sound Vib. 280(1), 329–357 (2005)

    Article  Google Scholar 

  35. Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21(7), 568–593 (1999)

    Article  Google Scholar 

  36. Gu, D.W., Petkov, P.H., Konstantinov, M.M.: Robust Control Design with MATLAB. Springer, Berlin (2005)

    MATH  Google Scholar 

  37. Green, M., Limebeer, D.J.N.: Linear Robust Control. Courier Dover, New York (2012)

    Google Scholar 

  38. Liu, T.X., Hua, H.X., Zhang, Z.Y.: Robust control of plate vibration via active constrained layer damping. Thin-Walled Struct. 42(3), 427–448 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Basic Research Program of China (No. 2011CB711100) and the National Natural Science Foundation of China (Nos. 10672017, 11172084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, ZG., Li, FM. Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams. Nonlinear Dyn 76, 57–68 (2014). https://doi.org/10.1007/s11071-013-1110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1110-6

Keywords

Navigation