Skip to main content
Log in

Dissipativity-based stable controller redesign for nonlinear MIMO switched systems in the presence of perturbations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper offers a control redesign method for a class of nonlinear MIMO perturbed dissipative switched systems. The controller for the nominal switched system without perturbation is considered to have been designed based on dissipativity. The nominal model is considered affine with perturbations in both nonlinear terms. The controller is then redesigned such that the dissipativity of the switched system with perturbations is maintained by including a robustifying term in the control law. The design is developed for the two cases of 2-norm and infinity-norm bounded perturbations. The proposed method is applied to a nonlinear MIMO switched system to verify the convergence of the state vector to the origin in the presence of perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Narendra, K.S., Driollet, O.A., Feiler, M., George, K.: Adaptive control using multiple models switching and tuning. Int. J. Adapt. Control Signal Process. 17(2), 87–102 (2003)

    Article  MATH  Google Scholar 

  2. EI-Farra, N.H., Mhaskar, P., Christofides, P.D.: Output feedback control of switched nonlinear systems using multiple Lyapunov functions. Syst. Control Lett. 54(12), 1163–1182 (2005)

    Article  Google Scholar 

  3. Khatounian, F., Moreau, S., Louis, J.P., Monmasson, E., Louveau, F., Alexandre, J.M.: Modeling and simulation of a hybrid dynamic system used in haptic interfaces. Math. Comput. Simul. 71(4–6), 270–281 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19(5), 59–70 (1999)

    Article  Google Scholar 

  5. Sun, Z., Ge, S.S., Lee, T.H.: Controllability and reachability criteria for switched linear systems. Automatica 38(5), 775–786 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hespanha, J.P., Liberzon, D., Angeli, D., Sontag, E.D.: Nonlinear norm-observability notions and stability of switched systems. IEEE Trans. Autom. Control 52(1), 154–168 (2005)

    Article  MathSciNet  Google Scholar 

  7. Sun, Z., Ge, S.S.: Analysis and synthesis of switched linear control systems. Automatica 41(2), 181–195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Su, Q., Zhao, J.: Stabilization of a class of switched systems with state constraints. Nonlinear Dyn. 70(2), 1499–1510 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, D., Zhong, S., Liu, X., Huang, Y.: Stability analysis for uncertain switched neutral systems with discrete time-varying delay: a delay-dependent method. Math. Comput. Simul. 80(2), 436–448 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lian, J., Wang, M.: Sliding-mode control of switched delay systems with nonlinear perturbations: average dwell time approach. Nonlinear Dyn. 62(4), 791–798 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mcclamroch, N.H., Kolmanovsky, I.: Performance benefits of hybrid control design for linear and nonlinear systems. Proc. IEEE 88, 1083–1096 (2000)

    Article  Google Scholar 

  13. Prieur, C., Goebel, R., Teel, A.R.: Hybrid feedback control and robust stabilization of nonlinear systems. IEEE Trans. Autom. Control 52(11), 2103–2117 (2007)

    Article  MathSciNet  Google Scholar 

  14. Decarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems. In: Antsaklis, J. (ed.) Proceedings of the IEEE: Special Issue on Hybrid Systems, vol. 88, pp. 1069–1082. IEEE Press, New York (2000)

    Google Scholar 

  15. Liberzon, D.: In: Switching in Systems and Control, Birkhäuser, Boston (2003)

    Chapter  Google Scholar 

  16. Cheng, D., Guo, L., Lin, Y., Wang, Y.: Stabilization of switched linear systems. IEEE Trans. Autom. Control 50(5), 661–666 (2005)

    Article  MathSciNet  Google Scholar 

  17. Lin, H., Antsaklis, P.J.: Switching stabilizability for continuous-time uncertain switched linear systems. IEEE Trans. Autom. Control 52(4), 633–646 (2007)

    Article  MathSciNet  Google Scholar 

  18. Zhao, J., Dimirovski, G.M.: Quadratic stability of a class of switched nonlinear systems. IEEE Trans. Autom. Control 49(4), 574–578 (2004)

    Article  MathSciNet  Google Scholar 

  19. Liberzon, D., Hespanha, J.P., Morse, A.S.: Stability of switched systems: a Lie-algebraic condition. Syst. Control Lett. 37(3), 117–122 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ooba, T., Funahashi, Y.: On a common quadratic Lyapunov function for widely distant systems. IEEE Trans. Autom. Control 42(12), 1697–1699 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peleties, P., DeCarlo, R.: Asymptotic stability of m-switched systems using Lyapunov functions. In: Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, pp. 3438–3439 (1992)

    Google Scholar 

  22. Willems, J.C.: Dissipative dynamical systems. Part I. General theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Willems, J.C.: Dissipative dynamical systems. Part II. Quadratic supply rates. Arch. Ration. Mech. Anal. 45(5), 352–393 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. Polushin, I.G., Marquez, H.J.: On the existence of a continuous storage function for dissipative systems. Syst. Control Lett. 46(2), 85–90 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hill, D., Moylan, P.: The stability of nonlinear dissipative systems. IEEE Trans. Autom. Control 21(5), 708–711 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  26. Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton Univ. Press, Princeton (2008)

    Google Scholar 

  27. Wen, J., Arcak, M.: A unifying passivity framework for network flow control. IEEE Trans. Autom. Control 49(2), 162–174 (2004)

    Article  MathSciNet  Google Scholar 

  28. Casagrande, D., Astolfi, A., Ortega, R.: Asymptotic stabilization of passive systems without damping injection: a sampled integral technique. Automatica 47(2), 262–271 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Haddad, W.M., Chellaboina, V.: Dissipativity theory and stability of feedback interconnections for hybrid dynamical systems. Math. Probl. Eng. 7(4), 299–335 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zefran, M., Bullo, F., Stein, M.: A notation of passivity for hybrid systems. In: Proc. IEEE Conf. Decision Control, Orlando, FL, pp. 768–773 (2001)

    Google Scholar 

  31. Zhao, J., Hill, D.J.: A notation of passivity for switched systems with state-dependent switching. J. Control Theory Appl. 4(1), 70–75 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wu, L., Zheng, W., Gao, H.: Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans. Autom. Control 58(3), 785–793 (2013)

    Article  Google Scholar 

  33. Chen, W., Saif, M.: Passivity and passivity based controller design of a class of switched control systems. In: Proc. of the 16th IFAC World Congress, Prague, CZ, pp. 143–147 (2005)

    Google Scholar 

  34. Zhao, J., Hillb, D.J.: Dissipativity theory for switched systems. IEEE Trans. Autom. Control 53(4), 941–953 (2008)

    Article  Google Scholar 

  35. Zhao, J., Hillb, D.J.: Passivity and stability of switched systems: a multiple storage function method. Syst. Control Lett. 57(2), 158–164 (2008)

    Article  MATH  Google Scholar 

  36. Liu, Y., Stojanovski, G.S., Stankovski, M.J., Dimirovski, G.M., Zhao, J.: Feedback passivation of switched nonlinear systems using storage-like functions. Int. J. Control. Autom. Syst. 9(5), 980–986 (2011)

    Article  Google Scholar 

  37. Liu, Y., Zhao, J.: Stabilization of switched nonlinear systems with passive and non-passive subsystems. Nonlinear Dyn. 67(3), 1709–1716 (2012)

    Article  MATH  Google Scholar 

  38. Zhao, J., Hill, D.J.: On stability, L2-gain and H control for switched systems. Automatica 44(5), 1220–1232 (2008)

    Article  MathSciNet  Google Scholar 

  39. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  40. Memona, A.Y., Khalil, H.K.: Output regulation of nonlinear systems using conditional servocompensators. Automatica 46(7), 1119–1128 (2010)

    Article  MathSciNet  Google Scholar 

  41. Baradaran-nia, M., Alizadeh, G., Khanmohammadi, S., Farahmand Azar, B.: Backstepping-based Lyapunov redesign control of hysteretic single degree-of-freedom structural systems. Nonlinear Dyn. 73(1–2), 1165–1186 (2013)

    Article  MathSciNet  Google Scholar 

  42. Montaseri, G., Yazdanpanah, M.J.: Adaptive control of uncertain nonlinear systems using mixed back stepping and Lyapunov redesign techniques. Commun. Nonlinear Sci. Numer. Simul. 17(8), 3367–3380 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Rubagotti, M., Estrada, A., Castanos, F., Ferrara, A., Fridman, L.: Integral sliding mode control for nonlinear systems with matched and unmatched perturbations. IEEE Trans. Autom. Control 56(11), 2699–2704 (2011)

    Article  MathSciNet  Google Scholar 

  44. Chang, Y.C., Yen, H.M.: Adaptive output feedback tracking control for a class of uncertain nonlinear systems using neural networks. IEEE Trans. Syst. Man Cybern. 35(6), 1311–1316 (2005)

    Article  Google Scholar 

  45. Lajqi, Sh., Pehan, S.: Designs and optimizations of active and semi-active non-linear suspension systems for a terrain vehicle. J. Mech. Eng. 58(12), 732–743 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Johari Majd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi, H., Majd, V.J. Dissipativity-based stable controller redesign for nonlinear MIMO switched systems in the presence of perturbations. Nonlinear Dyn 75, 769–781 (2014). https://doi.org/10.1007/s11071-013-1103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1103-5

Keywords

Navigation