Skip to main content
Log in

Discrete fractional logistic map and its chaos

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript


A discrete fractional logistic map is proposed in the left Caputo discrete delta’s sense. The new model holds discrete memory. The bifurcation diagrams are given and the chaotic behaviors are numerically illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42, 485–490 (1995)

    Article  Google Scholar 

  2. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rossler equations. Physica A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  4. Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Atici, F.M., Senguel, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1–9 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Holm, M.T.: The Laplace transform in discrete fractional calculus. Comput. Math. Appl. 62, 1591–1601 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, 1602–1611 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13, 574–582 (2011)

    MATH  MathSciNet  Google Scholar 

  10. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  11. Chen, F.L., Luo, X.N., Zhou, Y.: Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011, 713201 (2011). 12 pages

    MathSciNet  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Grant No. 11301257) and the Innovative Team Program of the Neijiang Normal University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, GC., Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn 75, 283–287 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: