Nonlinear Dynamics

, Volume 74, Issue 4, pp 969–989 | Cite as

Symmetries of second-order systems of ODEs and integrability

  • Muhammad Ayub
  • F. M. Mahomed
  • Masood Khan
  • M. N. Qureshi
Original Paper

Abstract

We present a method for finding a complete set of kth-order (k≥2) differential invariants including bases of invariants corresponding to vector fields in three variables of four-dimensional real Lie algebras. As a consequence, we provide a complete list of second-order differential invariants and canonical forms for vector fields of four-dimensional Lie algebras and their admitted regular systems of two second-order ODEs. Moreover, we classify invariant representations of these canonical forms of ODEs into linear, partial linear, uncoupled, and partial uncoupled cases. In addition, we give an integration procedure for invariant representations of canonical forms for regular systems of two second-order ODEs admitting four-dimensional Lie algebras.

Keywords

Systems of ODEs Canonical forms Lie symmetries Invariant representation Integrability 

Notes

Acknowledgements

FMM thanks the National Research Foundation of South Africa for an enabling research grant. We are grateful to the referees for useful comments.

References

  1. 1.
    Aminova, A.V., Aminov, N.A.M.: Projective geometry of systems of second-order differential equations. Mat. Sb. 197(7), 3–28 (2006) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ayub, M., Khan, M., Mahomed, F.M.: Second-order systems of ODEs admitting three-dimensional Lie algebras and integrability. J. Appl. Math. 2013, 147921 (2013) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ayub, M., Khan, M., Mahomed, F.M.: Algebraic linearization criteria for systems of ordinary differential equations. Nonlinear Dyn. 67(3), 2053–2062 (2012) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bagderina, Y.Y.: Linearization criteria for a system of two second-order ordinary differential equations. J. Phys. A, Math. Theor. 43, 465201 (2010) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bianchi, L.: Lezioni Sulla Teoria dei Gruppi Continui Finiti di Transformazioni. Enirco Spoerri, Pisa (1918) Google Scholar
  6. 6.
    Damianou, P.A., Sophocleous, C.: Symmetries of Hamiltonian systems with two degrees of freedom. J. Math. Phys. 40, 210–235 (1999) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Douglas, J.: Solution of the inverse problem of the calculus of variations. Trans. Am. Math. Soc. 50, 71–128 (1941) CrossRefGoogle Scholar
  8. 8.
    Gaponova, O., Nesterenko, M.: Systems of second-order ODEs invariant with respect to low-dimensional Lie algebras. Physics Am. Univ. Cairo 16(II), 238–256 (2006) Google Scholar
  9. 9.
    Gorringe, V.M., Leach, P.G.L.: Kepler’s third law and the oscillator isochronism. Am. J. Phys. 61, 991–995 (1993) CrossRefGoogle Scholar
  10. 10.
    Ibragimov, N.H., Mahomed, F.M., Mason, D.P., Sherwell, D.: Differential Equations and Chaos. New Age International (P) Limited, New Delhi (1996) Google Scholar
  11. 11.
    Ince, E.L.: Ordinary Differential Equations. Dover, New York (1956) Google Scholar
  12. 12.
    Leach, P.G.L.: A further note on the Hénon-Heiles problem. J. Math. Phys. 22, 679–682 (1981) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Leach, P.G.L., Gorringe, V.M.: The relationship between the symmetries of and the existence of conserved vectors for the equation \(\ddot{x}+ f(r)L + g(r)\hat{r}= 0 \). J. Phys. A, Math. Gen. 23, 2765–2774 (1990) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lie, S.: Vorlesungen Uber Differentialgleichungen mit bekannten infinitesimalen Transformationen. B.G. Teubner, Leipzig (1891) Google Scholar
  15. 15.
    Lie, S.: Uber differentiation. Math. Ann. 24, 537–578 (1927). Gesammetle Abhandlungen, 6 Leipzig, B.G. Teubner, 95–138 (1927) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mellin, C.M., Mahomed, F.M., Leach, P.G.L.: Solution of generalized Emden–Fowler equations with two symmetries. Int. J. Non-Linear Mech. 29, 529 (1994) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mubarakzyanov, G.M.: On solvable Lie algebras. Izv. Vysš. Učebn. Zaved., Mat. 1(32), 114–123 (1963) (in Russian) Google Scholar
  18. 18.
    Ovsiannikov, L.V.: In: Ames, W.F. (ed.) Group Analysis of Differential Equations. Academic Press, New York (1982) Google Scholar
  19. 19.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Text in Mathematics. Springer, New York (1993) CrossRefMATHGoogle Scholar
  20. 20.
    Olver, P.J.: Equivalence, Invariants and Symmetry. Cambridge University Press, Cambridge (1995) CrossRefMATHGoogle Scholar
  21. 21.
    Popovych, R.O., Boyko, V.M., Nesterenko, M.O., Lutfullin, M.W.: Realizations of real low-dimensional Lie algebras. J. Phys. A, Math. Gen. 36, 7337–7360 (2003) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Wafo Soh, C., Mahomed, F.M.: Canonical forms for systems of two second-order ordinary differential equations. J. Phys. A, Math. Gen. 34, 2883–2911 (2001) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wafo Soh, C., Mahomed, F.M.: Linearization criteria for a system of second-order ordinary differential equations. Int. J. Non-Linear Mech. 36(4), 671–677 (2001) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wafo Soh, C., Mahomed, F.M.: Reduction of order for systems of ordinary differential equations. J. Nonlinear Math. Phys. 11(1), 13–20 (2004) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Muhammad Ayub
    • 1
  • F. M. Mahomed
    • 2
  • Masood Khan
    • 3
  • M. N. Qureshi
    • 4
  1. 1.Department of MathematicsCOMSATS Institute of Information TechnologyAbbottabadPakistan
  2. 2.Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied MathematicsUniversity of the WitwatersrandWitsSouth Africa
  3. 3.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  4. 4.Department of MathematicsAzad Jammu and Kashmir UniversityMuzaffarabadPakistan

Personalised recommendations