Skip to main content
Log in

Exploring the origin, the nature, and the dynamical behavior of distant stars in galaxy models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We explore the regular or chaotic nature of orbits moving in the meridional plane of an axially symmetric galactic gravitational model with a disk, a dense spherical nucleus, and some additional perturbing terms corresponding to influence from nearby galaxies. In order to obtain this, we use the Smaller ALingment Index (SALI) technique integrating extensive samples of orbits. Of particular interest is the study of distant, remote stars moving in large galactocentric orbits. Our extensive numerical experiments indicate that the majority of the distant stars perform chaotic orbits. However, there are also distant stars displaying regular motion as well. Most distant stars are ejected into the galactic halo on approaching the dense and massive nucleus. We study the influence of some important parameters of the dynamical system, such as the mass of the nucleus and the angular momentum, by computing in each case the percentage of regular and chaotic orbits. A second-order polynomial relationship connects the mass of the nucleus and the critical angular momentum of the distant star. Some heuristic semi-theoretical arguments to explain and justify the numerically derived outcomes are also given. Our numerical calculations suggest that the majority of distant stars spend their orbital time in the halo where it is easy to be observed. We present evidence that the main cause for driving stars to distant orbits is the presence of the dense nucleus combined with the perturbation caused by nearby galaxies. The origin of young O and B stars observed in the halo is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Allen, C., Martos, M.A.: A simple, realistic model of the galactic mass distribution for orbit computations. Rev. Mex. Astron. Astrofis. 13, 137–147 (1986)

    Google Scholar 

  2. Bahcall, J.N., Schmidt, M., Soneira, R.M.: On the interpretation of rotation curves measured at large galactocentric distances. Astrophys. J. 258, L23–L27 (1982)

    Article  Google Scholar 

  3. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton Univ. Press, Princeton (2008)

    MATH  Google Scholar 

  4. Blitz, L., Fich, M., Kulkarni, S.: The new Milky Way. Science 220, 1233–1240 (1983)

    Article  Google Scholar 

  5. Brosche, P., Geffert, M., Doerenkamp, P., Tucholke, H.-J., Klemola, A.R., Ninkovic, S.: Space motions of globular clusters NGC 362 and NGC 6218 (M12). Astron. J. 102, 2022–2027 (1991)

    Article  Google Scholar 

  6. Caldwell, J.A.R., Ostriker, J.P.: The mass distribution within our galaxy—a three component model. Astrophys. J. 251, 61–87 (1981)

    Article  Google Scholar 

  7. Caranicolas, N.D.: The structure of motion in a 4-component galaxy mass model. Astrophys. Space Sci. 246, 15–28 (1997)

    Article  MATH  Google Scholar 

  8. Caranicolas, N.D.: A map for a group of resonant cases in a quartic galactic Hamiltonian. J. Astrophys. Astron. 22, 309–319 (2001)

    Article  Google Scholar 

  9. Caranicolas, N.D., Innanen, K.A.: Chaos in a galaxy model with nucleus and bulge components. Astron. J. 102, 1343–1347 (1991)

    Article  Google Scholar 

  10. Caranicolas, N.D., Papadopoulos, N.J.: Chaotic orbits in a galaxy model with a massive nucleus. Astron. Astrophys. 399, 957–960 (2003)

    Article  Google Scholar 

  11. Caranicolas, N.D., Zotos, E.E.: Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits. Nonlinear Dyn. 69, 1795–1805 (2012)

    Article  MathSciNet  Google Scholar 

  12. Carlberg, R.G., Innanen, K.A.: Galactic chaos and the circular velocity at the sun. Astron. J. 94, 666–670 (1987)

    Article  Google Scholar 

  13. Clutton-Brock, M., Innanen, K.A., Papp, K.A.: A theory for the gravitational potentials of spheroidal stellar systems and its application to the galaxy. Astrophys. Space Sci. 47, 299–314 (1977)

    Article  Google Scholar 

  14. Croswell, K., Latham, D.W., Carney, B.W., Schuster, W., Aguilar, L.: A search for distant stars in the Milky Way galaxy’s halo and thick disk. Astron. J. 101, 2078–2096 (1991)

    Article  Google Scholar 

  15. Dauphole, B., Geffert, M., Colin, J., Ducourant, C., Odenkirchen, M., Tucholke, H.-J.: The kinematics of globular clusters, apocentric distances and a halo metallicity gradient. Astron. Astrophys. 313, 119–128 (1996)

    Google Scholar 

  16. Deprit, A.: The Lissajous transformation. I Basics. Celest. Mech. Dyn. Astron. 51(3), 202–225 (1991)

    Google Scholar 

  17. Elipe, A.: Complete reduction of oscillators in resonance p:q. Phys. Rev. E 61, 6477–6484 (2000)

    Article  Google Scholar 

  18. Elmegreen, D.M.: Spiral structure of the Milky Way and external galaxies. In: The Milky Way Galaxy; Proceedings of the 106th Symposium, Groningen, Netherlands, pp. 255–272 (1983)

    Google Scholar 

  19. Gerhard, O.: Mass distribution in our galaxy. Space Sci. Rev. 100, 129–138 (2002)

    Article  Google Scholar 

  20. Hasan, H., Norman, C.A.: Chaotic orbits in barred galaxies with central mass concentrations. Astrophys. J. 361, 69–77 (1990)

    Article  Google Scholar 

  21. Hasan, H., Pfenniger, D., Norman, C.: Galactic bars with central mass concentrations—three-dimensional dynamics. Astrophys. J. 409, 91–109 (1993)

    Article  Google Scholar 

  22. Henon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)

    Article  MathSciNet  Google Scholar 

  23. Huang, R.Q.: Evolution of rotating binary stars. Astron. Astrophys. 422, 981–986 (2004)

    Article  MATH  Google Scholar 

  24. Huang, R.Q., Taam, R.E.: The non-conservative evolution of massive binary systems. Astron. Astrophys. 236, 107–116 (1990)

    Google Scholar 

  25. Miyamoto, M., Nagai, R.: Three-dimensional models for the distribution of mass in galaxies. Publ. Astron. Soc. Jpn. 27, 533–543 (1975)

    Google Scholar 

  26. Mülläri, A.A., Mülläri, T.B., Orlov, V.V., Petrova, A.V.: Catalogue of orbits of nearby stars: preliminary results. Astron. Astrophys. Trans. 15, 19–30 (1998)

    Article  Google Scholar 

  27. Papadopoulos, N.J., Caranicolas, N.D.: Chaotic orbits of distant stars. Astron. Astrophys. Trans. 24, 113–120 (2005)

    Article  Google Scholar 

  28. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  29. Richstone, D.O.: Scale-free models of galaxies. II—A complete survey of orbits. Astrophys. J. 252, 496–507 (1982)

    Article  Google Scholar 

  30. Saha, A.: A search for distant halo RR Lyrae stars. Astrophys. J. 283, 580–597 (1984)

    Article  Google Scholar 

  31. Saha, A.: RR Lyrae stars and the distant galactic halo—distribution, chemical composition, kinematics, and dynamics. Astrophys. J. 289, 310–319 (1985)

    Article  Google Scholar 

  32. Saha, A., Oke, J.B.: Spectroscopy and spectrophotometry of distant halo RR Lyrae stars. Astrophys. J. 285, 688–697 (1985)

    Article  Google Scholar 

  33. Skokos, C.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A, Math. Gen. 34, 10029–10043 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Skokos, Ch., Antonopoulos, Ch., Bountis, T.C., Vrahatis, M.N.: Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A, Math. Gen. 37, 6269–6284 (2004)

    Article  MathSciNet  Google Scholar 

  35. Zotos, E.E.: A new dynamical model for the study of galactic structure. New Astron. 16, 391–401 (2011)

    Article  Google Scholar 

  36. Zotos, E.E.: Trapped and escaping orbits in an axially symmetric galactic-type potential. Publ. Astron. Soc. Aust. 29, 161–173 (2012)

    Article  Google Scholar 

  37. Zotos, E.E.: Application of new dynamical spectra of orbits in Hamiltonian systems. Nonlinear Dyn. 69, 2041–2063 (2012)

    Article  MathSciNet  Google Scholar 

  38. Zotos, E.E.: Exploring the nature of orbits in a galactic model with a massive nucleus. New Astron. 17, 576–588 (2012)

    Article  Google Scholar 

  39. Zotos, E.E.: The fast norm vector indicator (FNVI) method: a new dynamical parameter for detecting order and chaos in Hamiltonian systems. Nonlinear Dyn. 70, 951–978 (2012)

    Article  MathSciNet  Google Scholar 

  40. Zotos, E.E., Caranicolas, N.D.: Are semi-numerical methods an effective tool for locating periodic orbits in 3D potentials? Nonlinear Dyn. 70, 279–287 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to express my warmest thanks to the two anonymous referees for the careful reading of the manuscript and for all the aptly suggestions and comments, which improved both the quality and the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zotos, E.E. Exploring the origin, the nature, and the dynamical behavior of distant stars in galaxy models. Nonlinear Dyn 74, 831–847 (2013). https://doi.org/10.1007/s11071-013-1008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1008-3

Keywords

Navigation