Nonlinear Dynamics

, Volume 74, Issue 3, pp 819–830 | Cite as

Difference map and its electronic circuit realization

  • M. García-MartínezEmail author
  • I. Campos-Cantón
  • E. Campos-Cantón
  • S. Čelikovský
Original Paper


In this paper we study the dynamical behavior of the one-dimensional discrete-time system, the so-called iterated map. Namely, a bimodal quadratic map is introduced which is obtained as an amplification of the difference between well-known logistic and tent maps. Thus, it is denoted as the so-called difference map. The difference map exhibits a variety of behaviors according to the selection of the bifurcation parameter. The corresponding bifurcations are studied by numerical simulations and experimentally. The stability of the difference map is studied by means of Lyapunov exponent and is proved to be chaotic according to Devaney’s definition of chaos. Later on, a design of the electronic implementation of the difference map is presented. The difference map electronic circuit is built using operational amplifiers, resistors and an analog multiplier. It turns out that this electronic circuit presents fixed points, periodicity, chaos and intermittency that match with high accuracy to the corresponding values predicted theoretically.


Chaotic behavior Lyapunov exponent Bifurcation parameter Bifurcation diagram Stability analysis 



M. García-Martínez is a doctoral fellows of CONACYT (Mexico) in the Graduate Program on Control and Dynamical Systems at DMAp-IPICYT.

E. Campos-Cantón acknowledges CONACYT for the financial support through project No. 181002.

S. Čelikovský has been supported by the Czech Science Foundation through the research grant no. 13-20433S.


  1. 1.
    Mengue, A.D., Essimbi, B.Z.C.: Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 70(2), 1241–1253 (2012) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wang, X.-y., Qin, X., Jessa, M.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn. 70, 1589–1592 (2012) CrossRefGoogle Scholar
  3. 3.
    Patidar, V., Sud, K.K., Pareel, N.K.: A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33, 441–452 (2009) zbMATHGoogle Scholar
  4. 4.
    Yuan, X., Xie, Y.-X.: A design of pseudo-random bit generator based on single chaotic system. Int. J. Mod. Phys. C 23(3), 1250024 (2012) CrossRefGoogle Scholar
  5. 5.
    Zou, A.-M., Kumar, K.D., Pashaie, R., Farhat, N.H.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70, 1283–1296 (2012) CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Y., Fei, S., Zhang, K.: Stabilization of impulsive switched linear systems with saturated control input. Nonlinear Dyn. 69, 793–804 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mazloom, S., Eftekhari-Moghadam, A.M.: Color image encryption based on coupled nonlinear chaotic map. Chaos Solitons Fractals 42, 1745–1754 (2009) CrossRefzbMATHGoogle Scholar
  8. 8.
    Shatheesh Sam, I., Devaraj, P., Bhuvaneswaran, R.S.: An intertwining chaotic maps based image encryption scheme. Nonlinear Dyn. 69, 1995–2007 (2012) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Farschi, S.M.R., Farschi, H.: A novel chaotic approach for information hiding in image. Nonlinear Dyn. 69, 1525–1539 (2012) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hussain, I., Shah, T., Gondal, M.A.: Image encryption algorithm based on PGL(2,GF(28)) S-boxes and TD-ERCS chaotic sequence. Nonlinear Dyn. 70, 181–187 (2012) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kwok, H.S., Tang, W.K.S.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32, 1518–1529 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Campos-Cantón, E., Femat, R., Pisarchik, A.N.: A family of multimodal dynamic maps. Commun. Nonlinear Sci. Numer. Simul. 9, 3457–3462 (2011) CrossRefGoogle Scholar
  13. 13.
    Devaney, R.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Westview Press, Boulder (2003) zbMATHGoogle Scholar
  14. 14.
    Kahng, B.: Redefining chaos: Devaney-chaos for piecewise continuous dynamical systems. Int. J. Math. Models Methods Appl. Sci. 3(4), 317–326 (2009) Google Scholar
  15. 15.
    Li, T.-Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, C., Chen, G.: Estimating the Lyapunov exponents of discrete systems. Chaos 14, 343–346 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sano, M., Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55, 1082–1085 (1985) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang, C., Wu, C.Q., Zhang, P.: Estimation of Lyapunov exponents from a time series for n-dimensional state space using nonlinear mapping. Nonlinear Dyn. 69, 1493–1507 (2012) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Suneel, M.: Electronic circuit realization of the logistic map. Sadhana 31, 69–78 (2006) CrossRefGoogle Scholar
  20. 20.
    Campos-Cantón, I., Campos-Cantón, E., Murguía, J.S., Rosu, H.C.: A simple electronic circuit realization of the tent map. Chaos Solitons Fractals 1, 12–16 (2009) CrossRefGoogle Scholar
  21. 21.
    Senani, R., Gupta, S.: Implementation of Chua’s chaotic circuit using current feedback op-amps. Electron. Lett. 34(9), 829–830 (1998) CrossRefGoogle Scholar
  22. 22.
    Banerjee, T.: Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dyn. 68, 565–573 (2012) CrossRefGoogle Scholar
  23. 23.
    Gandhi, G.: An improved Chua’s circuit and its use in hyperchaotic circuit. Analog Integr. Circuits Signal Process. 46(2), 173–178 (2006) CrossRefGoogle Scholar
  24. 24.
    Matsumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. I 31(12), 1055–1058 (1984) CrossRefzbMATHGoogle Scholar
  25. 25.
    Chua, L., Komuro, M., Matsumoto, T.: The double scroll family: parts I and II. IEEE Trans. Circuits Syst. I 33, 1073–1118 (1986) Google Scholar
  26. 26.
    Radwan, A., Soliman, A., El-Sedeek, A.: MOS realization of the double-scroll-like chaotic equation. IEEE Trans. Circuits Syst. I 50(2), 285–288 (2003) CrossRefGoogle Scholar
  27. 27.
    Yalcin, M., Suykens, J., Vandewalle, J., Ozoguz, S.: Families of scroll grid attractors. Int. J. Bifurc. Chaos 12(1), 23–41 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kilic, R.: On current feedback operational amplifier-based realization of Chua’s circuit. Circuits Syst. Signal Process. 22(5), 475–491 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kilic, R.: Experimental study of CFOA-based inductorless Chua’s circuit. Int. J. Bifurc. Chaos 14, 1369–1374 (2004) CrossRefzbMATHGoogle Scholar
  30. 30.
    O’Donoghue, K., Forbes, P., Kennedy, M.: A fast and simple implementation of Chua’s oscillator with cubic-like nonlinearity. Int. J. Bifurc. Chaos 15, 2959–2972 (2005) CrossRefzbMATHGoogle Scholar
  31. 31.
    Lü, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16(4), 775–858 (2006) CrossRefzbMATHGoogle Scholar
  32. 32.
    Addabbo, T., Alioto, M., Fort, A., Rocchi, S., Vignoli, V.: The digital tent map: performance analysis and optimized design as a low-complexity source of pseudorandom bits. IEEE Trans. Instrum. Meas. 55(5), 1451–1458 (2006) CrossRefGoogle Scholar
  33. 33.
    Perez, G., Cerdeira, H.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995) CrossRefGoogle Scholar
  34. 34.
    Short, K.M., Parker, A.T.: Unmasking a hyperchaotic communication scheme. Phys. Rev. E 58, 1159–1162 (1998) CrossRefGoogle Scholar
  35. 35.
    Zhou, C., Lai, C.H.: Extracting messages masked by chaotic signals of time-delay systems. Phys. Rev. E 60, 320–323 (1999) CrossRefGoogle Scholar
  36. 36.
    Zhang, Y., Li, C., Li, Q., Zhang, D., Shu, S.: Breaking a chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 69, 1091–1096 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Verhulst, P.F.: Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838) Google Scholar
  38. 38.
    Holmgren, R.A.: A First Course in Discrete Dynamical Systems. Springer, New York (1996) CrossRefzbMATHGoogle Scholar
  39. 39.
    Lynch, S.: Dynamical Systems with Applications. Birkhäuser, Boston (2010) zbMATHGoogle Scholar
  40. 40.
    Wu, C.W., Rul’kov, N.F.: Studying chaos via 1-D maps—a tutorial. IEEE Trans. Circuits Syst. I 40, 707–721 (1993) CrossRefzbMATHGoogle Scholar
  41. 41.
    Li, C.: A new method of determining chaos-parameter-region for the tent map. Chaos Solitons Fractals 21, 863–867 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Huang, W.: On complete chaotic maps with tent-maps-like structures. Chaos Solitons Fractals 24, 287–299 (2005) MathSciNetzbMATHGoogle Scholar
  43. 43.
    Blakely, J.N., Eskridge, M.B., Corron, N.J.: A simple Lorenz circuit and its radio frequency implementation. Chaos 17, 023112 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. García-Martínez
    • 1
    Email author
  • I. Campos-Cantón
    • 2
  • E. Campos-Cantón
    • 1
    • 3
  • S. Čelikovský
    • 4
  1. 1.Division de Matemáticas AplicadasInstituto Potosino de Investigación Científica y TecnológicaMéxicoMéxico
  2. 2.Facultad de CienciasUniversidad Autónoma de San Luis PotosíMéxicoMéxico
  3. 3.Departamento de Físico MatemáticasUniversidad Autónoma de San Luis PotosíMéxicoMéxico
  4. 4.Department of Control Theory, Institute of Information Theory and AutomationAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations