Skip to main content
Log in

A triangular plate element 2343 using second-order absolute-nodal-coordinate slopes: numerical computation of shape functions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the process by which geometrical and structural matrices of plate finite elements employing absolute nodal coordinate formulation (ANCF) are constructed is studied. The kinematic and topological properties of an arbitrary plate finite element are described using universal digital code dncm that provides systematic enumeration of finite elements. This code is formed using the element’s dimension d, the number of nodes it possesses n, the number of scalar coordinates per node c, and a multiplier describing the process of transforming a conventional finite element to an ANCF element m. The detailed generation of a new type of triangular plate finite element 2343 using numerical computation of shape functions is also discussed in the paper. The new triangular element employs position vectors and slope vectors up to second-order mixed-derivative slope vector. A detailed derivation of the equations of motion of the element is also provided and examples of its numerical simulation and validation presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This problem can unambiguously be denoted by text line 0<{−l/2,−b/2:±b/2}[l×b×t,E×ν]{+l/2,±b/2}″(0,0,−P) for the further external references. This line contains all data mentioned above: geometry and material parameters of the plate are given in the square brackets […], application points (or intervals separated by a colon: symbol) for constraints and forces are given in the curly brackets {…} and are measured with respect to the plate’s center. The cantilever condition is denoted by combination 0< meaning attaching to the fixed reference frame indexed 0. The force vector is given in parenthesis ″(…). In the figure, the shortest notation is presented where the extreme points and intervals of the plate are shown just by signs −, +,: and ±, omitting numeric values l/2 and b/2.

  2. A short text description of this problem, [1×2×0.01×1e3,1e5×0.3]{±,±}.g, contains two new elements: the dot symbol . denotes the spherical joints at the four edges denoted by {±,±}, while symbol g introduces the default uniform gravity force.

References

  1. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)

    Article  Google Scholar 

  3. Omar, M.A., Shabana, A.: A two-dimensional shear deformation beam for large rotation and deformation. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  4. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)

    Article  Google Scholar 

  5. Von Dombrowski, S.: Analysis of large flexible body deformation in multibody systems using absolute coordinates. Multibody Syst. Dyn. 8(4), 409–432 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5(1), 10 (2010)

    Article  Google Scholar 

  8. Nachbagauer, K., Gruber, P.G., Vetyukov, Yu., Gerstmayr, J.: A spatial thin beam finite element based on the absolute nodal coordinate formulation without singularities. In: Proc. of the ASME 2011 Int. Design Eng. Techn. Conf. & Computers and Information in Eng. Conf. IDETC/CIE 201, Washington, DC, USA, 28–31 August, 2011, pp. 28–31 (2011)

    Google Scholar 

  9. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  10. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1), 53–74 (2003)

    Article  MATH  Google Scholar 

  11. Garcia-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007)

    Article  MATH  Google Scholar 

  12. Nachbagauer, K., Pechstein, A., Irschik, H., Gerstmayr, J.: New locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  MATH  Google Scholar 

  13. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9(3), 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mikkola, A.M., Shabana, A.A.: A new plate element based on the absolute nodal coordinate formulation. In: Proc. of ASME 2001 DETC, Pittsburgh (2001)

    Google Scholar 

  15. Dmitrochenko, O.N., Pogorelov, D.Yu.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10, 17–43 (2003)

    Article  MATH  Google Scholar 

  16. Dufva, K., Shabana, A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 345–355 (2005)

    Google Scholar 

  17. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1(2), 103–108 (2006)

    Article  Google Scholar 

  18. Dmitrochenko, O.N., Mikkola, A.M.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4), 041012 (2008)

    Article  Google Scholar 

  19. Dmitrochenko, O.N., Mikkola, A.M.: Shear correction for thin plate finite elements based on the absolute nodal coordinate formulation. In: Proc. of ASME 2009 IDETC/CIE 2009, San Diego, California, USA, 2009.08.30–02, pp. 1–9 (2009)

    Google Scholar 

  20. Kubler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations and nonlinear structural damping using absolute nodal coordinates. Nonlinear Dyn. 34(1–2), 31–52 (2003)

    Article  MathSciNet  Google Scholar 

  21. Olshevskiy, A.A., Dmitrochenko, O.N.: Three-dimensional solid elements employing slopes in the absolute nodal coordinate formulation. In: Proc. of the 24th Nordic Seminar on Computational Mechanics, Helsinki, 2011.11.3–4, pp. 162–165 (2011)

    Google Scholar 

  22. Dufva, K., et al.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48(4), 449–466 (2007)

    Article  MATH  Google Scholar 

  23. Weed, D., Maqueda, L., Brown, M., Hussein, B., Shabana, A.: A new nonlinear multibody/finite element formulation for knee joint ligaments. Nonlinear Dyn. 60(4), 357–367 (2010)

    Article  MATH  Google Scholar 

  24. Gantoi, F., Brown, M., Shabana, A.: ANCF finite element/multibody system formulation of the ligament/bone insertion site constraints. J. Comput. Nonlinear Dyn. 5(3), 9 (2010)

    Article  Google Scholar 

  25. Wan, H., Dong, H., Ren, Y.: Study of strain energy in deformed insect wings dynamic. Behavior of materials. In: Conf. Proc. of the Society for Experimental Mechanics Series, vol. 1, pp. 323–328. Springer, New York (2011)

    Google Scholar 

  26. Shabana, A.A., Hamed, A.M., Mohamed, A.-N.A.: Use of B-spline in the finite element analysis: comparison with ANCF geometry. J. Comput. Nonlinear Dyn. 7(1), 011008 (2012)

    Article  Google Scholar 

  27. Sanborn, G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements. Multibody Syst. Dyn. 26, 191–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dibold, M., Gerstmayr, J.: Comparison of planar structural elements for multibody systems with large deformations. Multibody Dyn. Comput. Methods Appl. Sci. 23, 87–105 (2011)

    Article  Google Scholar 

  29. Dmitrochenko, O.N., Mikkola, A.A.: A formal procedure and invariants of a transition from conventional finite elements to the absolute nodal coordinate formulation. Multibody Syst. Dyn. 22(4), 323–339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dmitrochenko, O.N., Mikkola, A.A.: Extended digital nomenclature code dncm(dηςμ) for description of complex finite elements and generation of new elements. Mech. Based Des. Struct. Mach. 39(2), 229–252 (2011)

    Article  Google Scholar 

  31. Dmitrochenko, O.N., Mikkola, A.A.: Digital nomenclature code for topology and kinematics of finite elements based on the absolute nodal coordinate formulation. J. Multi-Body Dyn. 225(1), 229–252 (2011)

    Google Scholar 

  32. Melosh, R.J.: Structural analysis of solids. J. Struct. Eng. 4, 205–223 (1963)

    Google Scholar 

  33. Specht, B.: Modified shape functions for the three node plate bending element passing the patch test. Int. J. Numer. Methods Eng. 26, 705–715 (1988)

    Article  MATH  Google Scholar 

  34. Bogner, F.K., Fox, R.L., Schmit, L.A.: The generation of interelement-compatible stiffness and mass matrices by the use of interpolation formulae. In: Proc. of 1st Conf. on Matrix Methods in Structural Mechanics, vol. AFFDITR-66-80, pp. 397–443 (1966)

    Google Scholar 

  35. Yoo, W.-S., Lee, J.-H., Park, S.-J., Sohn, J.-H., Pogorelov, D. Yu., Dmitrochenko, O.N.: Large deflection analysis of a thin plate: computer simulations and experiments. Multibody Syst. Dyn. 11(2), 185–208 (2004)

    Article  MATH  Google Scholar 

  36. Craig, R., Kurdila, A.: Fundamentals of Structural Dynamics. Wiley, New York (2006)

    MATH  Google Scholar 

  37. Dunavant, D.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21(6), 1129–1148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, L., Cui, T., Liu, H.: A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27(l), 89–96 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  40. Gere, J.M., Timoshenko, S.P.: Mechanics of Materials, 4th edn. PWS, Boston (1997)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2012R1A2A2A04047240 and 2012R1A1A2008870), Russian Foundation for Basic Research (11-01-00500-A), and Defense Acquisition Program Administration and Agency for Defense Development under the contract UD120037CD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Wan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olshevskiy, A., Dmitrochenko, O., Lee, S. et al. A triangular plate element 2343 using second-order absolute-nodal-coordinate slopes: numerical computation of shape functions. Nonlinear Dyn 74, 769–781 (2013). https://doi.org/10.1007/s11071-013-1004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1004-7

Keywords

Navigation