Skip to main content

Chaotic behavior of gas bubble in non-Newtonian fluid: a numerical study

Abstract

In the present paper, the nonlinear behavior of bubble growth under the excitation of an acoustic pressure pulse in non-Newtonian fluid domain has been investigated. Due to the importance of the bubble in the medical applications such as drug, protein or gene delivery, blood is assumed to be the reference fluid. Effects of viscoelasticity term, Deborah number, amplitude and frequency of the acoustic pulse are studied. We have studied the dynamic behavior of the radial response of bubble using Lyapunov exponent spectra, bifurcation diagrams, time series and phase diagram. A period-doubling bifurcation structure is predicted to occur for certain values of the effects of parameters. The results show that by increasing the elasticity of the fluid, the growth phenomenon will be unstable. On the other hand, when the frequency of the external pulse increases the bubble growth experiences more stable condition. It is shown that the results are in good agreement with the previous studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Suzuki, R., Takizawa, T., Negishi, Y., Utoguchi, N., Maruyama, K.: Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int. J. Pharm. 354, 49–55 (2008)

    Article  Google Scholar 

  2. Hernot, S., Klibanov, A.L.: Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 60, 1153–1166 (2008)

    Article  Google Scholar 

  3. Ibsen, S., Benchimol, M., Simberg, D., Schutt, C., Steiner, J., Esener, S.: A novel nested liposome drug delivery vehicle capable of ultrasound triggered release of its payload. J. Control. Release 155, 0168 (2011)

    Article  Google Scholar 

  4. Husseini, G.A., Diaz de la Rosa, M.A., Richardson, E.S., Christensen, D.A., Pitt, W.G.: The role of cavitation in acoustically activated drug delivery. J. Control. Release 107, 253–261 (2005)

    Article  Google Scholar 

  5. Frenkel, V.: Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev. 60, 1193–1208 (2008)

    Article  Google Scholar 

  6. Hynynen, K.: Ultrasound for drug and gene delivery to the brain. Adv. Drug Deliv. Rev. 60, 1209–1217 (2008)

    Article  Google Scholar 

  7. Suzuki, R., Namai, E., Oda, Y., et al.: Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J. Control. Release 142, 245–250 (2010)

    Article  Google Scholar 

  8. Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-Newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39, 1116–1128 (2006)

    Article  Google Scholar 

  9. Janela, J., Moura, A., Sequeira, A.: A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries. J. Comput. Appl. Math. 234, 2783–2791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Razavi, A., Shirani, E., Sadeghi, M.R.: Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44, 2021–2030 (2011)

    Article  Google Scholar 

  11. Ashrafizaadeh, M., Bakhshaei, H.: A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations. Comput. Math. Appl. 58, 1045–1054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shaw, S., Murthy, P.V.S.N.: Magnetic targeting in the impermeable microvessel with two-phase fluid model non-Newtonian characteristics of blood. Microvasc. Res. 80, 209–220 (2010)

    Article  Google Scholar 

  13. Chen, J., Lu, X.-Y.: Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch. J. Biomech. 37, 1899–1911 (2004)

    Article  Google Scholar 

  14. Wang, C., Ho, J.-R.: A lattice Boltzmann approach for the non-Newtonian effect in the blood flow. Comput. Math. Appl. 62, 0898 (2011)

    MathSciNet  Google Scholar 

  15. Favelukis, M., Albalak, R.J.: Bubble growth in viscous Newtonian and non-Newtonian liquids. Chem. Eng. J. 63, 149–155 (1996)

    Google Scholar 

  16. Jiang, S., Ma, Y., Fan, W., Yang, K., Li, H.: Chaotic characteristics of bubbles rising with coalescences in pseudoplastic fluid. Chin. J. Chem. Eng. 18, 18–26 (2010)

    Article  Google Scholar 

  17. Schembri, F., Sapuppo, F., Bucolo, M.: Experimental classification of nonlinear dynamics in microfluidic bubbles flow. Nonlinear Dyn. 67, 2807–2819 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ichihara, M., Ohkunitani, H., Ida, Y., Kameda, M.: Dynamics of bubble oscillation and wave propagation in viscoelastic liquids. J. Volcanol. Geotherm. Res. 129, 37–60 (2004)

    Article  Google Scholar 

  19. Fu, T., Ma, Y., Funfschilling, D., Li, H.Z.: Bubble formation in non-Newtonian fluids in a microfluidic T-junction. Chem. Eng. Process. 50, 438–442 (2011)

    Article  Google Scholar 

  20. Frank, X., Dietrich, N., Wu, J., Barraud, R., Li, H.Z.: Bubble nucleation and growth in fluids. Chem. Eng. Sci. 62, 7090–7097 (2007)

    Article  Google Scholar 

  21. Shaokun, J., Youguang, M., Wenyuan, F., Ke, Y., Huaizhi, L.: Chaotic characteristics of bubbles rising with coalescences in pseudoplastic fluid. Chin. J. Chem. Eng. 18, 18–26 (2010)

    Google Scholar 

  22. Kafiabad, H.A., Sadeghy, K.: Chaotic behavior of a single spherical gas bubble surrounded by a Giesekus liquid: a numerical study. J. Non-Newton. Fluid Mech. 165, 800–811 (2010)

    Article  MATH  Google Scholar 

  23. Li, H.Z., Mouline, Y., Midoux, N.: Modelling the bubble formation dynamics in non-Newtonian fluids. Chem. Eng. Sci. 57, 339–346 (2002)

    Article  Google Scholar 

  24. Jiménez-Fernández, J., Crespo, A.: The collapse of gas bubbles and cavities in a viscoelastic fluid. Int. J. Multiph. Flow 32, 1294–1299 (2006)

    Article  MATH  Google Scholar 

  25. Li, H.Z., Frank, X., Funfschilling, D., Mouline, Y.: Towards the understanding of bubble interactions and coalescence in non-Newtonian fluids: a cognitive approach. Chem. Eng. Sci. 56, 6419–6425 (2001)

    Article  Google Scholar 

  26. Bloom, F.: Bubble stability in a class of non-Newtonian fluids with shear dependent viscosities. Int. J. Non-Linear Mech. 37, 527–539 (2002)

    Article  MATH  Google Scholar 

  27. Wang, H., Jiang, X., Ma, J., Zhang, W.: Vibration of a single protein bubble in Bingham liquid. J. Hydrodyn., Ser. B 21, 658–668 (2009)

    Article  Google Scholar 

  28. Allen, J.S., Roy, R.A.: Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity. J. Acoust. Soc. Am. 107, 3167–3178 (2000)

    Article  Google Scholar 

  29. Allen, J.S., Roy, R.A.: Dynamics of gas bubbles in viscoelastic fluids. II. Non-linear viscoelasticity. J. Acoust. Soc. Am. 108, 1640–1650 (2000)

    Article  Google Scholar 

  30. Jiménez-Fernández, J., Crespo, A.: Bubble oscillation and inertial cavitation in viscoelastic fluids. Ultrasonics 43, 643–651 (2005)

    Article  Google Scholar 

  31. Lind, S.J., Phillips, T.N.: Spherical bubble collapse in viscoelastic fluids. J. Non-Newton. Fluid Mech. 165, 56–64 (2010)

    Article  MATH  Google Scholar 

  32. Brujan, E.A.: A first-order model for bubble dynamics in a compressible viscoelastic liquid. J. Non-Newton. Fluid Mech. 84, 83–103 (1999)

    Article  MATH  Google Scholar 

  33. Sorokin, V.S., Blekhman, I.I., Thomsen, J.J.: Motions of elastic solids in fluids under vibration. Nonlinear Dyn. 60, 639–650 (2010)

    Article  MATH  Google Scholar 

  34. Sorokin, V.S., Blekhman, I.I., Vasilkov, V.B.: Motion of a gas bubble in fluid under vibration. Nonlinear Dyn. 67, 147–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Siewe Siewe, M., Yamgou, S.B., Moukam Kakmeni, F.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010)

    Article  MATH  Google Scholar 

  36. Gao, Q., Ma, J.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58, 209–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, H., Zuo, D., Zhang, Z., Xu, Q.: Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations. Nonlinear Dyn. 62, 623–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Dorfman, J.R.: An Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge University Press, New York (1999)

    Book  MATH  Google Scholar 

  39. Ott, E.: Chaos in Dynamical System. Cambridge University Press, New York (2002)

    Book  Google Scholar 

  40. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, A.: Determining Lyapunov exponents from a time series. Physica D 16D, 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  41. Behnia, S., Yahyavi, M.: Characterization of intermittency in hierarchy of chaotic maps with invariant measure. J. Phys. Soc. Jpn. 81, 124008-8 (2012)

    Article  Google Scholar 

  42. Simon, G., Cvitanovic, P., Levinsen, M.T., Csabai, I., Horath, A.: Periodic orbit theory applied to a chaotically oscillating gas bubble in water. Nonlinearity 15, 25–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Parlitz, U., Englisch, V., Scheffczyk, C., Lauterborn, W.: Bifurcation structure of bubble oscillators. J. Acoust. Soc. Am. 88, 1061–1077 (1990)

    Article  MathSciNet  Google Scholar 

  44. Lauterborn, W., Parlitz, U.: Methods of chaos physics and their application to acoustics p bifurcation structure of bubble oscillators. J. Acoust. Soc. Am. 84, 1975–1993 (1988)

    Article  MathSciNet  Google Scholar 

  45. Albernaz, D.L., Cunha, F.R.: Bubble dynamics in a maxwell fluid with extensional viscosity. Mech. Res. Commun. 38, 255–260 (2011)

    Article  MATH  Google Scholar 

  46. Behnia, S., Jafari Sojahrood, A., Soltanpoor, W., Jahanbakhsh, O.: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation. Ultrason. Sonochem. 16, 502–511 (2009)

    Article  Google Scholar 

  47. Macdonald, C.A., Gomatam, J.: Chaotic dynamics of microbubbles in ultrasonic fields. Proc. - Inst. Mech. Eng., 220, 333–343 (2006)

    Google Scholar 

  48. Behnia, S., Jafari, A., Soltanpoor, W., Jahanbakhsh, O.: Nonlinear transitions of a spherical cavitation bubble. Chaos Solitons Fractals 41, 818–828 (2009)

    Article  Google Scholar 

  49. Yasui, Y., Iida, K., Tuziuti, T., Kozuka, T., Towata, A.: Strongly interacting bubbles under an ultrasonic horn. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 77, 016609-016619 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Behnia.

Appendix: Stability analysis

Appendix: Stability analysis

Equations (4) and (5) can be expressed as a system of first-order ordinary differential equations in which the zero point is located on the wall of the spherical bubble:

$$ \left \{ \begin{array}{l} \displaystyle\frac{dR}{dt}=U, \\ \displaystyle\frac{dU}{dt}= \biggl[ -\displaystyle\frac{3}{2}U^2+\frac{p_0}{\rho\omega^2 R_0^2} \biggl((1+\mathit{We})\biggl(\displaystyle\frac{1}{R}\biggr)^{3k}\\ \hphantom{\displaystyle\frac{dU}{dt}=} {}-\mathit{We}\biggl(\displaystyle\frac{1}{R}\biggr)-\bigl(1+\alpha\sin (t)\bigr) \biggr) \biggr]\frac{1}{R}\\ \hphantom{\displaystyle\frac{dU}{dt}=} {}+ \displaystyle\frac{1}{R}\frac{2}{3\mathit{Re}}\biggl(\displaystyle\frac{1}{\omega R_0} \sqrt{\displaystyle\frac {p_0}{\rho}}\biggr)\\ \hphantom{\displaystyle\frac{dU}{dt}=} {}\times\displaystyle\int_0^{\infty} \biggl(\displaystyle\frac{\tau_{rr}(y,t)-\tau_{\theta\theta}(y,t)}{y_i+R^3}\biggr)\,dy,\\ \displaystyle\frac{d\tau_{rr}(y,t)}{dt}= \biggl(\biggl(\displaystyle\frac{-4R^2\dot{R}}{y_i+R^3}\biggr) -\displaystyle\frac{1}{\mathit{De}} \biggr)\tau_{rr}\\ \hphantom{\displaystyle\frac{d\tau_{rr}(y,t)}{dt}=} {}+\displaystyle\frac{4}{\mathit{De}}\biggl(\omega R_0\sqrt{\displaystyle\frac{p_0}{\rho }}\biggr)\biggl(\displaystyle\frac{R^2\dot{R}}{y_i+R^3}\biggr),\\ \displaystyle\frac{d\tau_{\theta\theta}(y,t)}{dt}= \biggl(\biggl(\displaystyle\frac{2R^2\dot {R}}{y_i+R^3}\biggr)-\displaystyle\frac{1}{\mathit{De}} \biggr)\tau_{rr}\\ \hphantom{\displaystyle\frac{d\tau_{\theta\theta}(y,t)}{dt}=} {}-\displaystyle\frac{2}{\mathit{De}}\biggl(\omega R_0\sqrt{\displaystyle\frac{p_0}{\rho}}\biggr) \biggl(\displaystyle\frac{R^2\dot{R}}{y_i+R^3}\biggr). \end{array} \right . $$
(7)

We is the Weber number, defined as

$$ \mathit{We}=\frac{2\sigma}{p_{c}R_{0}}. $$
(8)

Also, in above equation the initial conditions are taken as

$$\begin{aligned} &{R(0) = 1[R_0],} \end{aligned}$$
(9)
$$\begin{aligned} &{\tau_{\theta\theta}(0) =\tau_{rr}(0) = 0,} \end{aligned}$$
(10)
$$\begin{aligned} &{U(0) = 0.} \end{aligned}$$
(11)

This study is conducted for DeO(1) to avoid numerical difficulties because of the division by this quantity in Eq. (8).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Behnia, S., Mobadersani, F., Yahyavi, M. et al. Chaotic behavior of gas bubble in non-Newtonian fluid: a numerical study. Nonlinear Dyn 74, 559–570 (2013). https://doi.org/10.1007/s11071-013-0988-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0988-3

Keywords

  • Bubble dynamics
  • Non-Newtonian fluids
  • Chaotic oscillations
  • Deborah number
  • Bifurcation diagrams
  • Lyapunov spectrum