Skip to main content
Log in

A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an optimal fuzzy sliding mode controller is used for tracking the position of robot manipulator, is presented. In the proposed control, initially by using inverse dynamic method, the known sections of a robot manipulator’s dynamic are eliminated. This elimination is done due to reduction over structured and unstructured uncertainties boundaries. In order to overcome against existing uncertainties for the tracking position of a robot manipulator, a classic sliding mode control is designed. The mathematical proof shows the closed-loop system in the presence of this controller has the global asymptotic stability. Then, by applying the rules that are obtained from the design of classic sliding mode control and TS fuzzy model, a fuzzy sliding mode control is designed that is free of undesirable phenomena of chattering. Eventually, by applying the PSO optimization algorithm, the existing membership functions are adjusted in the way that the error tracking robot manipulator position is converged toward zero. In order to illustrate the performance of the proposed controller, a two degree-of-freedom robot manipulator is used as the case study. The simulation results confirm desirable performance of optimal fuzzy sliding mode control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken (2006)

    Google Scholar 

  2. Hodges, S.E.: Looking for a cheaper robot: visual feedback for automated PCB manufacture. Ph.D. thesis in University of Cambridge (1996)

  3. Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67(4), 2549–2559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liang, Y.-W., Xu, S.-D., Liaw, D.-C., Chen, C.-C.: A study of TS model-based SMC scheme with application to robot control. IEEE Trans. Ind. Electron. 55(11), 3964–3971 (2008)

    Article  Google Scholar 

  5. Becedas, J., Trapero, J.R., Feliu, V., Ramírez, H.S.: Adaptive controller for single-link flexible manipulators based on algebraic identification and generalized proportional integral control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(3), 735–751 (2009)

    Article  Google Scholar 

  6. Neo, S.S., Er, M.J.: Adaptive fuzzy controllers of a robot manipulator. Int. J. Syst. Sci. 27(6), 519–532 (1996)

    Article  MATH  Google Scholar 

  7. Jin, Y.: Decentralized adaptive fuzzy control of robot manipulators. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 28(1), 47–57 (1998)

    Article  Google Scholar 

  8. Wai, R.-J., Yang, Z.-W.: Adaptive fuzzy neural network control design via a TS fuzzy model for a robot manipulator including actuator dynamics. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 38(5), 1326–1346 (2008)

    Article  Google Scholar 

  9. Hyun, C.-H., Park, C.-W., Kim, S.: TS fuzzy model based indirect adaptive fuzzy observer and controller design. Inf. Sci. 180(11), 2314–2327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pagilla, P.R., Yu, B., Pau, K.L.: Adaptive control of time varying mechanical systems: analysis and experiments. IEEE/ASME Trans. Mechatron. 5(4), 410–418 (2000)

    Article  Google Scholar 

  11. Rojko, A., Jezernik, K.: Sliding-mode motion controller with adaptive fuzzy disturbance estimation. IEEE Trans. Ind. Electron. 51(5), 963–971 (2004)

    Article  Google Scholar 

  12. Cupertino, F., Naso, D., Mininno, E., Turchiano, B.: Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors. IEEE Trans. Ind. Appl. 45(5), 1688–1696 (2009)

    Article  Google Scholar 

  13. Morioka, H., Wada, K., Sabanovic, A., et al.: Neural network based chattering free sliding mode control. In: Proceeding of the 34th SICE Anniversary Conference, pp. 1303–1308 (1995)

    Google Scholar 

  14. Jezernik, K., Rodic, M., Safaric, R., et al.: Neural network sliding mode robot control. J. Robot. 15(1), 23–30 (1997)

    Article  Google Scholar 

  15. Hu, H., Woo, P.Y.: Fuzzy supervisory sliding mode and neural network control for manipulators. IEEE Trans. Ind. Electron. 53(3), 929–940 (2006)

    Article  Google Scholar 

  16. Li, C.T., Tan, Y.H.: Neural sliding mode control for systems with hysteresis. In: Proceedings of IEEE International Symposium on Intelligent Control, pp. 467–472 (2005)

    Google Scholar 

  17. Yildiz, Y., Sabanovic, A., Abidi, K.: Sliding mode neuro controller for uncertain systems. IEEE Trans. Ind. Electron. 54(3), 1676–1684 (2007)

    Article  Google Scholar 

  18. Fateh, M.M., Soltanpour, M.R.: Robust task-space control of robot manipulators under imperfect transformation of control space. Int. J. Innov. Comput. Inf. Control 5(12), 3949–3960 (2009)

    Google Scholar 

  19. Soltanpour, M.R., Shafiei, S.E.: Robust backstepping control of robot manipulator in task space with uncertainties in kinematics and dynamics. J. Electron. Electr. Eng. Autom. Robot. 96(8), 75–80 (2009)

    Google Scholar 

  20. Soltanpour, M.R., Siahi, M.: Robust control of robot manipulator in task space. Appl. Comput. Math. 8(2), 227–238 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Soltanpour, M.R., Fateh, M.M., Ahmadifard, A.R.: Nonlinear tracking control on a robot manipulator in the task space with uncertain dynamics. J. Appl. Sci. Asian Netw. Sci. Inf. 8(23), 4397–4403 (2008)

    Google Scholar 

  22. Soltanpour, M.R., Shafiei, S.E.: Design and stability analysis of a robust impedance control system for a robot manipulator. Stud. Inform. Control 17(1), 34–40 (2010)

    Google Scholar 

  23. Soltanpour, M.R., Shafiei, S.E.: Robust adaptive control of manipulators in the task space by dynamical partitioning approach. J. Electron. Electr. Eng. Autom. Robot. 101(5), 73–78 (2010)

    Google Scholar 

  24. Soltanpour, M.R., Fateh, M.M.: Adaptive robust control of robot manipulators in the task space under uncertainties. Aust. J. Basic Appl. Sci. 1(3), 308–322 (2009)

    Google Scholar 

  25. Soltanpour, M.R., Fateh, M.M.: Sliding mode robust control of robot manipulators in the task space by support of feedback linearization and backstepping control. World Appl. Sci. J. 6(1), 70–76 (2009)

    Google Scholar 

  26. Shafiei, S.E., Soltanpour, M.R.: Neural network sliding-model-PID controller design for electrically driven robot manipulators. Int. J. Innov. Comput. Inf. Control 5(12), 3949–3960 (2011)

    Google Scholar 

  27. Soltanpour, M.R., Khalilpour, J., Soltani, M.: Robust nonlinear control of robot manipulator with uncertainties in kinematics, dynamics and actuator models. Int. J. Innov. Comput. Inf. Control 8(8), 5487–5498 (2012)

    Google Scholar 

  28. Soltanpour, M.R., Zolfaghari, B., Soltani, M., Khooban, M.H.: Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties. Int. J. Innov. Comput. Inf. Control 9(7), 2713–2726 (2013)

    Google Scholar 

  29. Soltanpour, M.R.: Variable structure tracking control of robot manipulator in the task space in the presence of dynamic and kinematic uncertainties. J. Solid Fluid Mech. Shahrood Univ. Technol. 1(1), 81–88 (2012)

    Google Scholar 

  30. Khooban, M.H., Soltanpour, M.R.: Swarm optimization tuned fuzzy sliding mode control design for a class of nonlinear systems in presence of uncertainties. J. Intell. Fuzzy Syst. 24(2), 383–394 (2013)

    MathSciNet  Google Scholar 

  31. Eberhart, R.C., Shi, Y.H.: Tracking and optimizing dynamic systems with particle swarms. In: Proc. IEEE Congr. Evolutionary Computation, Seoul, Korea, pp. 94–97 (2001)

    Google Scholar 

  32. Bergh, F.V., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176, 937–971 (2006)

    Article  MATH  Google Scholar 

  33. Kennedy, J., Eberhart, R.C.: The particle swarm: social adaptation in informal-processing systems. In: New Ideas in Optimization. Maidenhead, pp. 379–387. McGraw-Hill, London (1999)

    Google Scholar 

  34. Zhang, L., Yu, H., Hu, S.: A new approach to improve particle swarm optimization. In: Proc. of the International Conf. on Genetic and Evolutionary Computation, pp. 134–139 (2003)

    Google Scholar 

  35. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proc. of the IEEE Conf. on Evolutionary Computation, Singapore, pp. 69–73 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Khooban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltanpour, M.R., Khooban, M.H. A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn 74, 467–478 (2013). https://doi.org/10.1007/s11071-013-0983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0983-8

Keywords

Navigation