Skip to main content
Log in

Volterra Series Approximation of a Class of Nonlinear Dynamical Systems Using the Adomian Decomposition Method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The relationship between the Adomian decomposition and the Volterra series is investigated and it is shown that the Volterra series can be considered as a specialization of the Adomian decomposition. Based on the relationship, the Volterra series can be calculated using an Adomian decomposition method whenever a convergent Volterra series representation exists. A class of nonlinear dynamical systems is considered and a new algorithm is introduced to compute the Volterra series representation for this class of nonlinear systems. The new method significantly simplifies the computation of the Volterra kernels and provides a new choice for the study of Volterra series of nonlinear dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbaoui, K., Cherruault, Y.: Convergence of Adomian’s method applied to differential equations. Comput. Math. Appl. 28, 103–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdelrazec, A.: Adomian decomposition method: convergence analysis and numerical approximation. Department of Mathematics, McMaster University, Hamilton, Ontario (2008)

  3. Abdelrazec, A., Pelinovsky, D.: Convergence of the Adomian decomposition method for initial-value problems. Numer. Methods Partial Differ. Equ. 27, 749–766 (2009)

    Article  MathSciNet  Google Scholar 

  4. Abdelwahid, F.: A mathematical model of Adomian polynomials. Appl. Math. Comput. 141, 447–453 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adomian, G.: A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135, 501–544 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adomian, G.: Nonlinear Stochastic System Theory and Application to Physics. Kluwer Academic, Dordrecht (1989)

    Book  Google Scholar 

  7. Adomian, G.: Solution of physical problems by decomposition. Comput. Math. Appl. 27, 145–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer, Boston (1994)

    Book  MATH  Google Scholar 

  9. Adomian, G.: Solution of coupled nonlinear partial differential equations by decomposition. Comput. Math. Appl. 31, 117–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Adomian, G., Rach, R.: Inhomogeneous nonlinear partial differential equations with variable coefficients. Appl. Math. Lett. 5, 11–12 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Adomian, G., Rach, R.: Modified Adomian polynomials. Math. Comput. Model. 24, 39–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Babolian, E., Vahidi, A.R., Azimzadeh, Z.: A comparison between Adomian’s decomposition method and the homotopy perturbation method for solving nonlinear differential equations. J. Appl. Sci. 12, 793–797 (2012)

    Article  Google Scholar 

  13. Barrett, J.F.: The use of Volterra series to find region of stability of a non-linear differential equation. Int. J. Control 1, 209–216 (1965)

    Article  MATH  Google Scholar 

  14. Bellomo, N., Monaco, R.: A comparison between Adomian’s decomposition methods and perturbation techniques for nonlinear random differential equations. J. Math. Anal. Appl. 110, 495–502 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Billings, S.A.: Identification of non-linear systems—a survey. IEE Proc. Part D, Control Theory Appl. 127, 272–285 (1980)

    Article  MathSciNet  Google Scholar 

  16. Billings, S.A., Boaghe, O.M.: The response spectrum map, a frequency domain equivalent to the bifurcation diagram. Int. J. Bifurc. Chaos Appl. Sci. Eng. 11, 1961–1975 (2001)

    Article  Google Scholar 

  17. Billings, S.A., Peyton Jones, J.C.: Mapping nonlinear integrodifferential equations into the frequency domain. Int. J. Control 52, 863–879 (1990)

    Article  MATH  Google Scholar 

  18. Boaghe, O.M.: Volterra series modelling limitations. The Department of Automatic Control & Systems Engineering, The University of Sheffield (2000)

  19. Boaghe, O.M., Billings, S.A.: Subharmonic oscillation modeling and MISO Volterra series. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 877–884 (2003)

    Article  MathSciNet  Google Scholar 

  20. Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. 32, 1150–1161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boyd, S., Chua, L.O., Desoer, C.A.: Analytical foundations of Volterra series. IMA J. Math. Control Inf. 1, 243–282 (1984)

    Article  MATH  Google Scholar 

  22. Brockett, R.W.: Volterra series and geometric control theory. Automatica 12, 167–176 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bruni, C., Dipillo, G., Koch, G.: Bilinear systems: an appealing class of “nearly linear” systems in theory and applications. IEEE Trans. Autom. Control 19, 334–348 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bullo, F.: Series expansions for analytic systems linear in control. Automatica 38, 1425–1432 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cherruault, Y., Adomian, G., Abbaoui, K., Rach, R.: Further remarks on convergence of decomposition method. Int. J. Bio-Med. Comput. 38, 89–93 (1995)

    Article  Google Scholar 

  26. Edwards, J.Y., Roberts, J.A., Ford, N.J.: A comparison of Adomian’s decomposition method and Runge Kutta methods for approximate solution of some predator prey model equations. Manchester Center of Computational Mathematics (1997)

  27. El-Sayed, S.M., Abdel-Aziz, M.R.: A comparison of Adomian’s decomposition method and wavelet-Galerkin method for solving integro-differential equations. Appl. Math. Comput. 136, 151–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fliess, M., Lamnabhi, M., Lamnabhi-Lagarrigue, F.: An algebraic approach to nonlinear functional expansions. IEEE Trans. Circuits Syst. 30, 554–570 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. George, D.A.: Continuous nonlinear systems. Tech. Rep., MIT (1959)

  30. Gilbert, E.: Functional expansions for the response of nonlinear differential systems. IEEE Trans. Autom. Control 22, 909–921 (1977)

    Article  MATH  Google Scholar 

  31. Helie, T., Laroche, B.: Computation of convergence bounds for Volterra series of linear-analytic single-input systems. IEEE Trans. Autom. Control 56, 2062–2072 (2011)

    Article  MathSciNet  Google Scholar 

  32. Hosseini, M.M., Nasabzadeh, H.: On the convergence of Adomian decomposition method. Appl. Math. Comput. 182, 536–543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Korenberg, M.J., Hunter, I.W.: The identification of nonlinear biological systems: Volterra kernel approaches. Ann. Biomed. Eng. 24, 250–268 (1996)

    Article  Google Scholar 

  34. Krener, A.J.: Linearization and bilinearization of control systems. In: Kokotovic, P.V., Davidson, E.S. (eds.) 12th Allerton Conference on Circuits and Systems, Montecello, Illinois (1974)

    Google Scholar 

  35. Ku, Y.H., Wolf, A.A.: Volterra–Wiener functionals for the analysis of nonlinear systems. J. Franklin Inst. 281, 9–26 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, L.M., Billings, S.A.: Piecewise Volterra modeling of the Duffing oscillator in the frequency-domain. Mech. Syst. Signal Process. 26, 117–127 (2012)

    Article  Google Scholar 

  37. Peng, Z.K., Lang, Z.Q.: On the convergence of the Volterra-series representation of the Duffing’s oscillators subjected to harmonic excitations. J. Sound Vib. 305, 322–332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rach, R.: On the Adomian (decomposition) method and comparisons with Picard’s method. J. Math. Anal. Appl. 128, 480–483 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rack, R.C.: A new definition of the Adomian polynomials. Kybernetes 37 (2008)

  40. Rugh, W.J.: Nonlinear System Theory. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  41. Rugh, W.J.: Nonlinear System Theory: the Volterra/Wiener Approach. Johns Hopkins University Press, London (1981)

    MATH  Google Scholar 

  42. Seng, V., Abbaoui, K., Cherruault, Y.: Adomian’s polynomials for nonlinear operators. Math. Comput. Model. 24, 59–65 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shawagfeh, N., Kaya, D.: Comparing numerical methods for the solutions of systems of ordinary differential equations. Appl. Math. Lett. 17, 323–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Song, J., Yin, F., Cao, X., Lu, F.: Fractional variational iteration method versus Adomian’s decomposition method in some fractional partial differential equations. J. Appl. Math. 2013, 1–10 (2013)

    Google Scholar 

  45. Swain, A.K., Billings, S.A.: Generalized frequency response function matrix for MIMO non-linear systems. Int. J. Control 74, 829–844 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tomlinson, G.R., Manson, G., Lee, G.M.: A simple criterion for establishing an upper limit to the harmonic excitation level of the Duffing oscillator using the Volterra series. J. Sound Vib. 190, 751–762 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equation. Dover, New York (1959)

    Google Scholar 

  48. Wazwaz, A.-M.: A comparison between Adomian decomposition method and Taylor series method in the series solutions. Appl. Math. Comput. 97, 37–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wazwaz, A.-M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. Comput. 111, 33–51 (2000)

    Article  MathSciNet  Google Scholar 

  50. Wazwaz, A.-M.: A comparison between the variational iteration method and Adomian decomposition method. J. Comput. Appl. Math. 207, 129–136 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Worden, K., Manson, G.: A Volterra series approximation to the coherence of the Duffing oscillator. J. Sound Vib. 286, 529–547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhu, Y., Chang, Q., Wu, S.: A new algorithm for calculating Adomian polynomials. Appl. Math. Comput. 169, 402–416 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the UK Engineering and Physical Sciences Research Council (EPSRC) and the European Research Council (ERC). The authors also thank the reviewers for the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Guo, L.Z., Billings, S.A. et al. Volterra Series Approximation of a Class of Nonlinear Dynamical Systems Using the Adomian Decomposition Method. Nonlinear Dyn 74, 359–371 (2013). https://doi.org/10.1007/s11071-013-0975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0975-8

Keywords

Navigation