Skip to main content
Log in

A new curved gradient deficient shell element of absolute nodal coordinate formulation for modeling thin shell structures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A curved gradient deficient shell element for the Absolute Nodal Coordinate Formulation (ANCF) is proposed for modeling initially thin curved structures. Unlike the fully parameterized elements of ANCF, a full mapping of the gradient vectors between different configurations is not available for gradient deficient elements, therefore it is cumbersome to work in a rectangular coordinate system for an initially curved element. In this study, a curvilinear coordinate system is adopted as the undeformed Lagrangian coordinates, and the Green–Lagrange strain tensor with respect to the curvilinear frame is utilized to characterize the deformation energy of the shell element. As a result, the strain due to the initially curved element shape is eliminated naturally, and the element formulation is obtained in a concise mathematical form with a clear physical interpretation. For thin structures, the simplified formulations for the evaluation of elastic forces are also given. Moreover, an approach to deal with the on-surface slope discontinuity is also proposed for modeling general curved shell structures. Finally, the developed element of ANCF is validated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Shabana, A.A.: An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Technical report #MBS96-1-UIC, University of Illinois at Chicago (1996)

  2. Schiehlen, W.: Computational dynamics: theory and applications of multibody systems. Eur. J. Mech. A, Solids 25, 566–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sugiyama, H., Shabana, A.A.: Application of plasticity theory and absolute nodal coordinate formulation to flexible multibody system dynamics. J. Mech. Des. 126, 478–487 (2004)

    Article  Google Scholar 

  5. Sugiyama, H., Shabana, A.A.: On the use of implicit integration methods and the absolute nodal coordinate formulation in the analysis of elasto-plastic deformation problems. Nonlinear Dyn. 37, 245–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243, 565–576 (2001)

    Article  Google Scholar 

  7. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  8. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 221, 219–231 (2007)

    Google Scholar 

  9. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcia-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    Article  MATH  Google Scholar 

  11. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235, 539–565 (2000)

    Article  Google Scholar 

  12. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)

    Article  Google Scholar 

  13. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  14. Dmitrochenko, O.N., Pogorelov, D.YU.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10, 17–43 (2003)

    Article  MATH  Google Scholar 

  15. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 345–355 (2005)

    Google Scholar 

  16. Sugiyama, H., Koyama, H., Yamashita, H.: Gradient deficient curved beam element using the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5, 021001 (2010)

    Article  Google Scholar 

  17. Liu, C., Tian, Q., Hu, H.Y.: New spatial gradient deficient curved thin beam and plate elements of the absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  18. Shabana, A.A., Mikkola, A.M.: Use of the finite element absolute nodal coordinate formulation in modeling slope discontinuity. J. Mech. Des. 125, 342–350 (2003)

    Article  Google Scholar 

  19. Shabana, A.A., Maqueda, L.G.: Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements. Multibody Syst. Dyn. 20, 239–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shabana, A.A.: General method for modeling slope discontinuities and T-sections using ANCF gradient deficient finite elements. J. Comput. Nonlinear Dyn. 6, 024502 (2011)

    Article  Google Scholar 

  21. Huang, K.Z.: Nonlinear Continuum Mechanics. Tsinghua University Press, Beijing (1989) (in Chinese)

    Google Scholar 

  22. Kulikov, G.M., Plotnikova, S.V.: Non-linear exact geometry 12-node solid-shell element with three translational degrees of freedom per node. Int. J. Numer. Methods Eng. 88, 1363–1389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Arciniega, R.A., Reddy, J.N.: Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Comput. Methods Appl. Mech. Eng. 196, 1048–1073 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schwarze, M., Reese, S.: A reduced integration solid-shell finite element based on the EAS and the ANS concept-geometrically linear problems. Int. J. Numer. Methods Eng. 80, 1322–1355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sanborn, G.G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin plate finite elements. Multibody Syst. Dyn. 26, 191–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Borisenko, A.I., Tarapov, I.E.: Vector and Tensor Analysis with Applications. Dover Publications, New York (1979)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China under Grant Nos. 10972036, 10832002, 11221202, 11202025 and 11290151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. N. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, D., Liu, C., Tian, Q. et al. A new curved gradient deficient shell element of absolute nodal coordinate formulation for modeling thin shell structures. Nonlinear Dyn 74, 153–164 (2013). https://doi.org/10.1007/s11071-013-0955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0955-z

Keywords

Navigation