Skip to main content
Log in

Dynamics in two nonsmooth predator–prey models with threshold harvesting

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Considering a good pest control program should reduce the pest to levels acceptable to the public, we investigate the threshold harvesting policy on pests in two predator–prey models. Both models are nonsmooth and the aim of this paper is to provide how threshold harvesting affects the dynamics of the two systems. When the harvesting threshold is larger than some positive level, the harvesting does not affect the ecosystem; when the harvesting threshold is less than the level, the model has complex dynamics with multiple coexistence equilibria, limit cycle, bistability, homoclinic orbit, saddle-node bifurcation, transcritical bifurcation, subcritical and supercritical Hopf bifurcation, Bogdanov–Takens bifurcation, and discontinuous Hopf bifurcation. Firstly, we provide the complete stability analysis and bifurcation analysis for the two models. Furthermore, some numerical simulations are given to illustrate our results. Finally, it is found that harvesting lowers the level of both species for natural enemy–pest system while raises the densities of both species for the pest–crop system. It is seen that the threshold harvesting policy of the enemy system is more effective than the crop system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hall, D., Norgaard, R.: On the time and application of pesticides. Am. J. Agric. Econ. 55, 198–201 (1973)

    Article  Google Scholar 

  2. Sunding, D., Zivin, J.: Insect population dynamics, pesticide use and farmworker health. Am. J. Agric. Econ. 82, 527–540 (2000)

    Article  Google Scholar 

  3. Liang, J., Tang, S.: Optimal dosage and economic threshold of multiple pesticide applications for pest control. Math. Comput. Model. 51, 487–503 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shoemaker, C.: Optimal timing of multiple application of pesticides with residual toxicity. Biometrics 36, 803–812 (1979)

    Article  Google Scholar 

  5. Talpaz, H., Curry, G., Sharpe, P., DeMichele, D., Frisbie, R.: Optimal pesticide application for controlling the boll weevil in cotton. Am. J. Agric. Econ. 60, 469–475 (1978)

    Article  Google Scholar 

  6. Headley, J.: Defining the economic threshold, presented at the National Academy of Sciences. In: Symposium on Pest Control Strategies for the Future, Washington, DC, 15 April 1971, pp. 100–108 (1972)

    Google Scholar 

  7. Tang, S., Chen, L.: Modelling and analysis of integrated pest management strategy. Discrete Contin. Dyn. Syst. 4, 759–768 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tang, S., Cheke, R.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50, 257–292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tang, S., Xiao, Y., Chen, L., Cheke, R.: Integrated pest management models and their dynamical behavior. Bull. Math. Biol. 67, 115–135 (2005)

    Article  MathSciNet  Google Scholar 

  10. Pei, Y., Chen, L., Zhang, Q., Li, C.: Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control. J. Theor. Biol. 235, 495–503 (2005)

    Article  MathSciNet  Google Scholar 

  11. Pei, Y., Zeng, G., Chen, L.: Species extinction and permanence in a prey-predator model with two-type functional responses and impulsive biological control. Nonlinear Dyn. 52, 71–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ji, L., Wu, C.: Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11, 2285–2295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xiao, D., Ruan, S.: Bogdanov–Takens bifurcations in predator–prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506 (1999)

    MathSciNet  Google Scholar 

  14. Xiao, D., Jennings, L.: Bifurcations of a ratio-dependent predator–prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, Y., Chen, F., Li, Z.: Stability analysis of a prey–predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182, 672–683 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pei, Y., Lv, Y., Li, C.: Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system. Appl. Math. Model. 36, 1752–1765 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tao, Y., Wang, X., Song, X.: Effect of prey refuge on a harvested predator–prey model with generalized functional response. Commun. Nonlinear Sci. Numer. Simul. 16, 1052–1059 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang, S., Xiao, Y., Cheke, R.: Multiple attractors of host–parasitoid models with integrated pest management strategies: eradication, persistence and outbreak. Theor. Popul. Biol. 73, 181–197 (2008)

    Article  MATH  Google Scholar 

  19. Tang, S., Cheke, R.: Models for integrated pest control and their biological implications. Math. Biosci. 215, 115–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Collie, J., Spencer, P.: Management Strategies for fish populations subject to long term environmental variability and depensatory predation, Technical report 93-02, Alaska Sea Grant College, 629–650 (1993)

  21. Aanes, S., Engen, S., Saether, B., Willebrand, T., Marcstrom, V.: Sustainable harvesting strategies of willow ptarmigan in a fluctuating environment. Ecol. Appl. 12, 281–290 (2002)

    Article  Google Scholar 

  22. Leard, B., Rebaza, J., Saether, B.: Analysis of predator–prey models with continuous threshold harvesting. Appl. Math. Comput. 217, 5265–5278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lande, R., Saether, B., Engen, S.: Threshold harvesting for sustainability of fluctuating resources. Ecology 78, 1341–1350 (1997)

    Article  Google Scholar 

  24. Rebaza, J.: Dynamics of prey threshold harvesting and refuge. J. Comput. Appl. Math. 236, 1743–1752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, X., Liu, S.: Codimension-two bifurcation analysis in two-dimensional Hindmarsh–Rose model. Nonlineat Dyn. 67, 847–857

  26. Tian, R., Cao, Q., Yang, S.: The codimension-two bifurcation for the recent proposed SD oscillator. Nonlinear Dyn. 59, 19–27 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  28. Leine, R.: Bifurcations of equilibria in non-smooth continuous systems. Physica D 223, 121–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leine, R., van Campen, D.: Bifurcation phenomena in non-smooth dynamical systems. Eur. J. Mech. A, Solids 25, 595–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chattopadhyay, J., Sarkar, R., Mandal, S.: Toxin producing plankton may act as a biological control for planktonic blooms: a field study and mathematical modelling. J. Theor. Biol. 215, 333–344 (2002)

    Article  Google Scholar 

  31. Kuang, N., Freedman, H.: Uniqueness of limit cycles in Gause-type models of predator–prey systems. Math. Biosci. 88, 76–84 (1988)

    Article  MathSciNet  Google Scholar 

  32. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7. Springer, Berlin (2006)

    Google Scholar 

  33. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. Science Press, Beijing (1992) (in Chinese). English edition. Transl. Math. Monogr., vol. 101. Am. Math. Soc., Providence (1992)

    MATH  Google Scholar 

  34. Hale, J.: Dynamics and Bifurcations. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the critical comments and invaluable suggestions made by anonymous honorable reviewers. This work is supported by the Natural Science Foundation of China, the Doctoral Program of Higher Education of China and National Natural Science Foundation of China (11101305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, Y., Yuan, R. & Pei, Y. Dynamics in two nonsmooth predator–prey models with threshold harvesting. Nonlinear Dyn 74, 107–132 (2013). https://doi.org/10.1007/s11071-013-0952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0952-2

Keywords

Navigation