Skip to main content

Advertisement

Log in

Leaderless and leader-follower cooperative control of multiple marine surface vehicles with unknown dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Unlike the tracking control of a single marine vehicle, this paper considers the leaderless and leader-follower cooperative control of multiple marine surface vehicles subject to unknown nonlinear dynamics and ocean disturbances, all seeking to maintain a relative formation. For both cases, a cooperative control design approach is proposed by integrating neural networks, a backstepping technique, and graph theory. It is shown that with the developed cooperative controllers, formation behavior among vehicles can be achieved for any undirected connected communication graphs without requiring the accurate model of each vehicle. Based on Lyapunov stability analysis, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded, and cooperative tracking errors converge to a small neighborhood of the origin. Simulation results are given to show the efficacy of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  2. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  3. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2007)

    Article  MathSciNet  Google Scholar 

  4. Lin, Z.Y., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)

    Article  MathSciNet  Google Scholar 

  5. Zou, A.M., Kumar, K.D.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70(2), 1283–1296 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, H.Q., Liao, X.F., Dong, T., Xiao, L.: Second-order consensus seeking in directed networks of multi-agent dynamical systems via generalized linear local interaction protocols. Nonlinear Dyn. 70(3), 2213–2226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, J., Liu, Z.X., Chen, Z.Q.: Coordinative control of multi-agent systems using distributed nonlinear output regulation. Nonlinear Dyn. 67(3), 1871–1881 (2012)

    Article  MATH  Google Scholar 

  8. Hong, Y.G., Hu, J.P., Gao, L.X.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Control Lett. 56(7), 474–483 (2007)

    Article  MATH  Google Scholar 

  10. Song, Q., Cao, J.D., Yu, W.W.: Second-order leader-following consensus of nonlinear multi-agents via pinning control. Syst. Control Lett. 59(9), 553–562 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meng, Z.Y., Ren, W., Cao, Y., You, Z.: Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41(1), 75–88 (2010)

    Article  Google Scholar 

  12. Hu, J.P., Hong, Y.G.: Leader-following coordination of multi-agent systems with coupling time delays. Physica A 374, 853–863 (2007)

    Article  Google Scholar 

  13. Dong, W.J., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic dynamic system. Automatica 45(3), 706–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, H.W., Lewis, F.L., Das, A.: Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Trans. Autom. Control 56(8), 1948–1952 (2011)

    Article  MathSciNet  Google Scholar 

  15. Hou, Z.G., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(3), 636–647 (2009)

    Article  Google Scholar 

  16. Das, A., Lewis, F.L.: Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica 59(9), 543–552 (2010)

    Google Scholar 

  17. Das, A., Lewis, F.L.: Cooperative adaptive control for synchronization of second-order system with unknown nonlinearities. Int. J. Robust Nonlinear Control 21(13), 1509–1524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, H.W., Lewis, F.L.: Adaptive cooperative tracking control of higher order nonlinear systems with unknown dynamics. Automatica 48(7), 1432–1439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, G.Q.: Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 61(1), 134–142 (2012)

    Article  MATH  Google Scholar 

  20. Khoo, S.Y., Xie, L.H., Man, Z.H.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 219–228 (2009)

    Article  Google Scholar 

  21. Chopra, N., Spong, M.W.: Passivity-based control of multi-agent systems. Adv. Robot Control 107–134 (2007)

  22. Peng, Z.H., Wang, D., Hu, X.J.: Robust adaptive formation control of underactuated autonomous surface vehicles with uncertain dynamics. IET Control Theory Appl. 5(12), 1378–1387 (2011)

    Article  MathSciNet  Google Scholar 

  23. Peng, Z.H., Wang, D., Chen, Z.Y., Hu, X.J., Lan, W.Y.: Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Trans. Control Syst. Technol. 21(2), 513–520 (2013)

    Article  Google Scholar 

  24. Skjetne, R., Moi, S., Fossen, T.I.: Nonlinear formation control of marine craft. In: IEEE Conference on Decision and Control, vol. 2, Las Vegas, Nevada, USA, pp. 1699–1704 (2002)

    Google Scholar 

  25. Arrichiello, F., Chiaverini, S., Fossen, T.I.: Formation control of underactuated surface vessels using the null-space-based behavioral control. In: Inter. Conf. on Intel. Robot. and Systems, Beijing, China, pp. 5942–5947 (2006)

    Google Scholar 

  26. Ihle, I.F., Arcak, M., Fossen, T.I.: Passivity-based designs for synchronized path following. Automatica 43(9), 1508–1518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tee, K.P., Ge, S.S.: Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Trans. Control Syst. Technol. 14(4), 750–756 (2006)

    Article  Google Scholar 

  28. Dai, S.L., Wang, C., Luo, F.: Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 8(4), 801–810 (2012)

    Article  Google Scholar 

  29. Chen, M., Ge, S.S., Choo, Y.S.: Neural network tracking control of ocean surface vessels with input saturation. In: International Conf. on Automation and Logistics, Shenyang, China, pp. 85–89 (2009)

    Chapter  Google Scholar 

  30. Pan, C.Z., Lai, X.Z., Yang, S.X., Wu, M.: An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics. Expert Syst. Appl. 40(5), 1629–1635 (2013)

    Article  Google Scholar 

  31. Wang, D., Huang, J.: Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form. Automatica 38(8), 1365–1372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fossen, T.I.: Marine Control System: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim (2002)

    Google Scholar 

  33. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 6(1), 195–202 (2005)

    Article  Google Scholar 

  34. Krstić, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  35. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (1996)

    Google Scholar 

  36. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  37. Skjetne, R., Fossena, T.I., Kokotovic, P.V.: Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica 41(2), 289–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and any reviewers for their constructive comments and suggestions, which have improved the quality of the paper. This work was supported in part by the National Nature Science Foundation of China under Grants 61273137, 51209026, 61074017, 51179019, and in part by the Fundamental Research Funds for the Central Universities under Grant 3132013037, and in part by the Program for Liaoning Excellent Talents in University under Grant LR 2012016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Z., Wang, D., Li, T. et al. Leaderless and leader-follower cooperative control of multiple marine surface vehicles with unknown dynamics. Nonlinear Dyn 74, 95–106 (2013). https://doi.org/10.1007/s11071-013-0951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0951-3

Keywords

Navigation