Skip to main content
Log in

A novel image recovery method based on discrete cosine transform and matched blocks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a method for image recovery based on Discrete Cosine Transform (DCT) and finding the best matched blocks by using a part of the fractal compression algorithm. At the same time, we propose a new check algorithm for checking if image blocks are tampered. First, the original image is divided into small blocks. The best matched block of each small block is searched in a particular way. Then the matching information is embedded as backup into other blocks. For the ones that fail to find the best matched blocks, DCT is applied on them and then quantized to be the backup. In order to prevent the backup of the tampered blocks from damaging, we generate 3 backups for each block and embed them into different quadrants. On the receiving side, the tampering check bits are extracted to localize the tampered areas, and the backup bits are used to restore the contents of the tampered regions. The experimental results have proved a good restorability of this algorithm, and the lower the tampering rate is, the better quality of restored content can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xiang, S., Kim, H.J., Huang, J.: Invariant image watermarking based on statistical features in the low-frequency domain. IEEE Trans. Circuits Syst. Video Technol. 18(6), 777–790 (2008)

    Article  Google Scholar 

  2. Farschi, S.M.R., Farschi, H.: A novel chaotic approach for information hiding in image. Nonlinear Dyn. 69(4), 1525–1539 (2012)

    Article  MathSciNet  Google Scholar 

  3. Run, R.S., Hong, S.J., Lai, J.L., Kao, T.W., Chen, R.J.: An improved SVD-based watermarking technique for copyright protection. Expert Syst. Appl. 39(1), 673–689 (2012)

    Article  Google Scholar 

  4. Cancellaro, M., Battisti, F., Carli, M., Boato, G., Natale, F.G.B.D.: A commutative digital image watermarking and encryption method in the tree structured Haar transform domain. Signal Process. Image Commun. 26(1), 1–12 (2011)

    Article  Google Scholar 

  5. Chang, C.Y., Wang, H.J., Su, S.J.: Copyright authentication for images with a full counter-propagation neural network. Expert Syst. Appl. 37(12), 7639–7647 (2010)

    Article  Google Scholar 

  6. Hsieh, S.L., Tsai, I.J., Yeh, C.P., Chang, C.M.: An image authentication scheme based on digital watermarking and image secret sharing. Multimed. Tools Appl. 52(2–3), 597–619 (2011)

    Article  Google Scholar 

  7. Li, C.L., Wang, Y.H., Ma, B., Zhang, Z.X.: A novel self-recovery fragile watermarking scheme based on dual-redundant-ring structure. Comput. Electr. Eng. 37(6), 927–940 (2011)

    Article  Google Scholar 

  8. Lin, Z.C., He, J.F., Tang, X.O., Tang, C.K.: Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognit. 42(11), 2492–2501 (2009)

    Article  MATH  Google Scholar 

  9. Cao, Y.J., Gao, T.G., Fan, L., Yang, Q.T.: A robust detection algorithm for copy-move forgery in digital images. Forensic Sci. Int. 214(1–3), 33–43 (2011)

    Google Scholar 

  10. Qi, X.J., Xin, X.: A quantization-based semi-fragile watermarking scheme for image content authentication. J. Vis. Commun. Image Represent. 22(2), 187–200 (2011)

    Article  Google Scholar 

  11. Peng, F., Guo, R.S., Li, C.T., Long, M.: A semi-fragile watermarking algorithm for authenticating 2D CAD engineering graphics based on log-polar transformation. Comput. Aided Des. 42(12), 1207–1216 (2010)

    Article  Google Scholar 

  12. Zhu, X.Z., Ho, A.T.S., Marziliano, P.: A new semi-fragile image watermarking with robust tampering restoration using irregular sampling. Signal Process. Image Commun. 22(5), 515–528 (2007)

    Article  Google Scholar 

  13. Fridrich, J., Goljan, M.: Images with self-correcting capabilities. In: 99th International Conference on Image Processing (ICIP), vol. 3, pp. 792–796 (1999)

    Google Scholar 

  14. Zhang, X.P., Wang, S.Z., Qian, Z.X., Feng, G.R.: Reference sharing mechanism for watermark self-embedding. IEEE Trans. Image Process. 20(2), 485–495 (2011)

    Article  MathSciNet  Google Scholar 

  15. Qian, Z.X., Feng, G.R., Zhang, X.P., Wang, S.Z.: Image self-embedding with high-quality restoration capability. Digit. Signal Process. 21(2), 278–286 (2011)

    Article  MathSciNet  Google Scholar 

  16. Bravo-Solorio, S., Nandi, A.K.: Secure fragile watermarking method for image authentication with improved tampering localization and self-recovery capabilities. Signal Process. 91(4), 728–739 (2011)

    Article  MATH  Google Scholar 

  17. Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: sub-image encryption with hyper chaos. Nonlinear Dyn. 67(1), 557–566 (2012)

    Article  MathSciNet  Google Scholar 

  18. Wang, X.Y., Teng, L.: An image blocks encryption algorithm based on spatiotemporal chaos. Nonlinear Dyn. 67(1), 365–371 (2012)

    Article  MathSciNet  Google Scholar 

  19. Liu, S.H., Yao, H.X., Gao, W., Liu, Y.L.: An image fragile watermark scheme based on chaotic image pattern and pixel-pairs. Appl. Math. Comput. 185(2), 869–882 (2007)

    Article  MATH  Google Scholar 

  20. Zhang, X.P., Wang, S.Z., Qian, Z.X., Feng, G.R.: Self-embedding watermark with flexible restoration quality. Multimed. Tools Appl. 54(2), 385–395 (2011)

    Article  MathSciNet  Google Scholar 

  21. Chang, C.C., Chen, K.N., Lee, C.F., Liu, L.J.: A secure fragile watermarking scheme based on chaos-and-hamming code. J. Syst. Softw. 84(9), 1462–1470 (2011)

    Article  Google Scholar 

  22. Chen, W.C., Wang, M.S.: A fuzzy c-means clustering-based fragile watermarking scheme for image authentication. Expert Syst. Appl. 36(2), 1300–1307 (2009)

    Article  Google Scholar 

  23. Zhang, X.P., Wang, S.Z.: Fragile watermarking with error-free restoration capability. IEEE Trans. Multimed. 10(8), 1490–1499 (2008)

    Article  Google Scholar 

  24. Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57(3), 431–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y.J., Chen, C.L.P., Wen, G.X., Tong, S.C.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)

    Article  Google Scholar 

  26. Hernandez-Avalos, P.A., Feregrino-Uribe, C., Cumplido, R.: Watermarking using similarities based on fractal codification. Digit. Signal Process. 22(2), 324–336 (2012)

    Article  MathSciNet  Google Scholar 

  27. Kiani, S., Moghaddam, M.E.: A multi-purpose digital image watermarking using fractal block coding. J. Syst. Softw. 84(9), 1550–1562 (2011)

    Article  Google Scholar 

  28. Liu, Y.J., Wang, W., Tong, S.C., Liu, Y.S.: Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans. Syst. Man Cybern., Part A 40(1), 170–184 (2010)

    Article  Google Scholar 

  29. Liu, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf. Sci. 177(18), 3901–3917 (2007)

    Article  MATH  Google Scholar 

  30. Liu, Y.J., Tong, S.C., Chen, C.L.P.: Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 21(2), 275–288 (2013)

    Article  Google Scholar 

  31. Zhang, T., Zhuang, Z.: Representation of discrete sequences with high-dimensional iterated function systems. Nonlinear Dyn. 48(1–2), 49–57 (2007)

    Article  MathSciNet  Google Scholar 

  32. Zhang, T., Liu, J.L., Zhuang, Z.: Representation of discrete sequences with N-dimensional iterated function systems in tensor form. Nonlinear Dyn. 52(1–2), 89–93 (2008)

    Article  MATH  Google Scholar 

  33. He, H.J., Zhang, J.S., Chen, F.: Adjacent-block based statistical detection method for self-embedding watermarking techniques. Signal Process. 89(8), 1557–1566 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 61173183, 60973152, and 60573172), the Doctoral Program Foundation of Institution of Higher Education of China (No. 20070141014), Program for Liaoning Excellent Talents in University (No. LR2012003), the National Natural Science Foundation of Liaoning Province (No. 20082165), and the Fundamental Research Funds for the Central Universities (No. DUT12JB06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, D. & Guo, X. A novel image recovery method based on discrete cosine transform and matched blocks. Nonlinear Dyn 73, 1945–1954 (2013). https://doi.org/10.1007/s11071-013-0915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0915-7

Keywords

Navigation