Skip to main content
Log in

The dynamic behavior of spiral waves in stochastic Hodgkin–Huxley neuronal networks with ion channel blocks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chemical blocking is known to affect neural network activity. Here, we quantitatively investigate the dynamic behavior of spiral waves in stochastic Hodgkin–Huxley neuronal networks during sodium- or potassium-ion channel blockages. When the sodium-ion channels are blocked, the spiral waves first become sparse and then break. The critical factor for the transition of spiral waves (x Na) is sensitive to the channel noise. However, with the potassium-ion channel block, the spiral waves first become intensive and then form other dynamic patterns. The critical factor for the transition of spiral waves (x K) is insensitive to the channel noise. With the sodium-ion channel block, the spike frequency of a single neuron in the network is reduced, and the collective excitability of the neuronal network weakens. By blocking the potassium ion channels, the spike frequency of a single neuron in the network increases, and the collective excitability of the neuronal network is enhanced. Lastly, we found that the behavior of spiral waves is directly related to the system synchronization. This research will enhance our understanding of the evolution of spiral waves through toxins or drugs and will be helpful to find potential applications for controlling spiral waves in real neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  2. Yu, Y., Shu, Y., McCormick, D.A.: Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J. Neurosci. 28(29), 7260–7272 (2008)

    Article  Google Scholar 

  3. Sun, X., Perc, M., Lu, Q., Kurths, J.: Spatial coherence resonance on diffusive and small-world networks of Hodgkin–Huxley neurons. Chaos 18, 023102 (2008)

    Article  MathSciNet  Google Scholar 

  4. Lin, M., Luo, Z.Y., Bai, B.F., Xu, F., Lu, T.J.: Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain. PLoS ONE 6, e18068 (2011)

    Article  Google Scholar 

  5. Schmid, G., Goychuk, I., Hänggi, P.: Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin–Huxley model. Phys. Biol. 1, 61 (2004)

    Article  Google Scholar 

  6. Schmid, G., Goychuk, I., Hänggi, P.: Controlling the spiking activity in excitable membranes via poisoning. Physica A 344, 665–670 (2004)

    Article  Google Scholar 

  7. Gong, Y.B., Xu, B., Ma, X.G., Han, J.Q.: Effect of channel block on the collective spiking activity of coupled stochastic Hodgkin–Huxley neurons. Sci. China Ser. B 51, 341–346 (2008)

    Article  Google Scholar 

  8. Ozer, M., Perc, M., Uzuntarla, M.: Controlling the spontaneous spiking regularity via channel blocking on Newman–Watts networks of Hodgkin–Huxley neurons. Europhys. Lett. 86, 40008 (2009)

    Article  Google Scholar 

  9. Sun, G.Q.: Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69, 1097–1104 (2012)

    Article  Google Scholar 

  10. Sun, G.Q., Jin, Z., Li, L., Li, B.L.: Self-organized wave pattern in a predator–prey model. Nonlinear Dyn. 60, 265–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vasiev, B., Siegert, F., Weijer, C.: Multiarmed spirals in excitable media. Phys. Rev. Lett. 78, 2489–2492 (1997)

    Article  Google Scholar 

  12. Garfinkel, A., Kim, Y.H., Voroshilovsky, O., Qu, Z., Kil, J.R., Lee, M.H., Karagueuzian, H.S., Weiss, J.N., Chen, P.S.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. USA 97, 6061 (2000)

    Article  Google Scholar 

  13. Bursac, N., Aguel, F., Tung, L.: Multiarm spirals in a two-dimensional cardiac substrate. Proc. Natl. Acad. Sci. USA 101, 15530 (2004)

    Article  Google Scholar 

  14. Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C.R., Schiff, S.J., Wu, J.Y.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897 (2004)

    Article  Google Scholar 

  15. Davidenko, J.M., Pertsov, A.V., Salomonsz, R., Baxter, W., Jalife, J.: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992)

    Article  Google Scholar 

  16. Jalife, J.: Ventricular fibrillation: mechanisms of initiation and maintenance. Annu. Rev. Physiol. 62, 25–50 (2000)

    Article  Google Scholar 

  17. Hu, G., Xiao, J., Chua, L.O., Pivka, L.: Controlling spiral waves in a model of two-dimensional arrays of Chua’s circuits. Phys. Rev. Lett. 80, 1884–1887 (1998)

    Article  Google Scholar 

  18. Ma, J., Tang, J., Zhang, A.H., Jia, Y.: Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci. China Ser. G 53, 672–679 (2010)

    Article  Google Scholar 

  19. Ma, J., Wu, Y., Ying, H.P., Jia, Y.: Channel noise-induced phase transition of spiral wave in networks of Hodgkin–Huxley neurons. Chin. Sci. Bull. 56, 151–157 (2011)

    Article  Google Scholar 

  20. Wang, C.N., Ma, J., Liu, Y., Huang, L.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012)

    Article  MATH  Google Scholar 

  21. Ma, J., Huang, L., Tang, J., Ying, H.P., Jin, W.Y.: Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 17, 4281–4293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fox, R.F., Lu, Y.: Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E 49, 3421 (1994)

    Article  Google Scholar 

  23. Schmid, G., Goychuk, I., Hänggi, P.: Stochastic resonance as a collective property of ion channel assemblies. Europhys. Lett. 56, 22 (2001)

    Article  Google Scholar 

  24. Jung, P., Shuai, J.: Optimal sizes of ion channel clusters. Europhys. Lett. 56, 29 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jun Ma for useful discussions and helpful comments. This work is supported by the National Natural Science Foundation of China (11272242, 10972170, and 10602003) and the New Faculty Research Foundation of Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SB., Wu, Y., Li, JJ. et al. The dynamic behavior of spiral waves in stochastic Hodgkin–Huxley neuronal networks with ion channel blocks. Nonlinear Dyn 73, 1055–1063 (2013). https://doi.org/10.1007/s11071-013-0852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0852-5

Keywords

Navigation