Advertisement

Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 363–376 | Cite as

Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs

  • Mohammad Pourmahmood AghababaEmail author
  • Hasan Pourmahmood Aghababa
Original Paper

Abstract

Centrifugal flywheel governors are known as chaotic non-autonomous mechanical devices used for automatic control of the speed of engines. The main characteristic of them is avoiding the damage caused by sudden change of the load torques. In this paper, the problem of robust finite-time synchronization of centrifugal flywheel governor systems is studied. The effects of unknown parameters, model uncertainties, external noises, and input nonlinearities are fully taken into account. We propose some adaptive laws to overcome the side effects of the unknown parameters of the system on the synchronization performance. Then, a robust adaptive switching controller is introduced to synchronize centrifugal flywheel governors with nonlinear control inputs in a given finite time. The finite-time fast convergence property of the proposed scheme is analytically proved and numerically illustrated.

Keywords

Finite-time synchronization Non-autonomous centrifugal governor Adaptive law Unknown parameter Input nonlinearity 

References

  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Lee, S.M., Choi, S.J., Ji, D.H., Park, J.H., Won, S.C.: Synchronization for chaotic Lur’e systems with sector–restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277–288 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35, 3080–3091 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Aghababa, M.P., Heydari, A.: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities. Appl. Math. Model. 36, 1639–1652 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Aghababa, M.P., Akbari, M.E.: A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances. Appl. Math. Comput. 218, 5757–5768 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Aghababa, M.P., Feizi, H.: Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs. Chin. Phys. B 21, 060506 (2012) CrossRefGoogle Scholar
  8. 8.
    Aghababa, M.P., Aghababa, H.P.: Chaos suppression of a class of unknown uncertain chaotic systems via single input. Commun. Nonlinear Sci. Numer. Simul. 17, 3533–3538 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Aghababa, M.P., Feizi, H.: Design of a sliding mode controller for synchronizing chaotic systems with parameter and model uncertainties and external disturbances. Trans. Inst. Meas. Control (2012). doi: 10.1177/0142331211434657 Google Scholar
  10. 10.
    Aghababa, M.P., Aghababa, H.P.: A novel finite-time sliding mode controller applied to synchronize chaotic systems with input nonlinearity. Arab. J. Sci. Eng. (2012). doi: 10.1007/s13369-012-0459-z Google Scholar
  11. 11.
    Aghababa, M.P.: A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs. Chin. Phys. B 20, 090505 (2011) CrossRefGoogle Scholar
  12. 12.
    Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs. Appl. Math. Mech. 33, 155–164 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Aghababa, M.P., Aghababa, H.P.: Chaos suppression of uncertain gyros in a given finite time. Chin. Phys. B 21, 110505 (2012) CrossRefGoogle Scholar
  14. 14.
    Aghababa, M.P., Aghababa, H.P.: Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties. Nonlinear Dyn. 67, 2689–2701 (2012) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Aghababa, M.P., Aghababa, H.P.: Adaptive finite-time stabilization of uncertain non-autonomous chaotic electromechanical gyrostat systems with unknown parameters. Mech. Res. Commun. 38, 500–505 (2011) CrossRefGoogle Scholar
  16. 16.
    Aghababa, M.P., Aghabab, H.P.: Synchronization of mechanical horizontal platform systems in finite time. Appl. Math. Model. 36, 4579–4591 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of a non-autonomous chaotic rotating mechanical system. J. Franklin Inst. 349, 2875–2888 (2012) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Aghababa, M.P., Aghababa, H.P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69, 1903–1914 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Aghababa, M.P., Aghababa, H.P.: Adaptive finite-time synchronization of non-autonomous chaotic systems with uncertainty. J. Comput. Nonlinear Dyn. 8, 031006 (2013) CrossRefGoogle Scholar
  20. 20.
    Aghababa, M.P.: Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J. Comput. Nonlinear Dyn. 7, 021010 (2012) CrossRefGoogle Scholar
  21. 21.
    Aghababa, M.P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 17, 2670–2681 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems via fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69, 247–261 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Beltrami, E.: Mathematics for Dynamic Modeling. Academic Press, Boston (1987) zbMATHGoogle Scholar
  24. 24.
    Chu, Y.D., Zhang, J.G., Li, X.F., Chang, Y.X., Luo, G.W.: Chaos and chaos synchronization for a non-autonomous rotational machine systems. Nonlinear Anal., Real World Appl. 9, 1378–1393 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Ge, Z.M., Yang, H.S., Chen, H.H., Chen, H.K.: Regular and chaotic dynamics of a rotational machine with a centrifugal governor. Int. J. Eng. Sci. 37, 921–943 (1999) CrossRefGoogle Scholar
  26. 26.
    Zhang, J.G., Li, X.F., Chu, Y.D., Yu, J.N., Chang, Y.X.: Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system. Chaos Solitons Fractals 39, 2150–2168 (2009) zbMATHCrossRefGoogle Scholar
  27. 27.
    Zhang, J.G., Yu, J.N., Chu, Y.D., Li, X.F., Chang, Y.X.: Bifurcation and chaos of a non-autonomous rotational machine systems. Simul. Model. Pract. Theory 16, 1588–1605 (2008) CrossRefGoogle Scholar
  28. 28.
    Sotomayor, J., Mello, L.F., Braga, D.C.: Stability and Hopf bifurcation in an hexagonal governor system. Nonlinear Anal., Real World Appl. 9, 889–898 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Ge, Z.M., Jhuang, W.R.: Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos Solitons Fractals 33, 270–289 (2007) zbMATHCrossRefGoogle Scholar
  30. 30.
    Ge, Z.M., Lee, C.I.: Non-linear dynamics and control of chaos for a rotational machine with a hexagonal centrifugal governor with a spring. J. Sound Vib. 262, 845–864 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ge, Z.M., Lee, C.I.: Anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor. J. Sound Vib. 282, 635–648 (2005) CrossRefGoogle Scholar
  32. 32.
    Ge, Z.M., Lee, C.I.: Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay. Chaos Solitons Fractals 23, 1855–1864 (2005) zbMATHGoogle Scholar
  33. 33.
    Aghababa, M.P., Aghababa, H.P.: Chaos suppression of rotational machine systems via finite-time control method. Nonlinear Dyn. 69, 1881–1888 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of non-autonomous uncertain chaotic centrifugal flywheel governor systems with input nonlinearities. J. Vib. Control (2012). doi: 10.1177/1077546312463715 Google Scholar
  35. 35.
    Aghababa, M.P.: Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems. Chin. Phys. B 21, 030502 (2012) CrossRefGoogle Scholar
  36. 36.
    Curran, P.F., Chua, L.O.: Absolute stability theory and the synchronization problem. Int. J. Bifurc. Chaos 7, 1357–1382 (1997) Google Scholar
  37. 37.
    Zhang, H., Huang, W., Wang, Z., Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters. Phys. Lett. A 350, 363–366 (2006) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mohammad Pourmahmood Aghababa
    • 1
    Email author
  • Hasan Pourmahmood Aghababa
    • 2
    • 3
  1. 1.Electrical Engineering DepartmentUrmia University of TechnologyUrmiaIran
  2. 2.Department of MathematicsUniversity of TabrizTabrizIran
  3. 3.Research Center for Industrial Mathematics of University of TabrizTabrizIran

Personalised recommendations