Skip to main content

Observations on the dynamics of bubble cluster in an ultrasonic field

Abstract

The dynamics driven interaction between the bubbles in a cavitation cluster is known to be a complex phenomenon indicative of a highly active nonlinear as well as chaotic behavior in ultrasonic fields. By considering the cluster of encapsulated microbubble with a thin elastic shell in ultrasonic fields, in this paper, the dynamics of microbubbles has been studied via applying the methods of chaos physics. Bifurcation, Lyapunov exponent, and time series are plotted with respect to variables such as amplitude, initial bubble radius, frequency and viscosity. The findings of the study indicate that a bubble cluster undergoes a chaotic unstable region as the amplitude and frequency of ultrasonic pulse are increased mainly due to the period doubling phenomenon. The results of the present study are supported by findings of previous studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Borrelli, M.J., O’Brien, W.D. Jr, et al.: Production of uniformly sized serum albumin and dextrose microbubbles. J. Ultrasound Med. 19, 198–208 (2012)

    Google Scholar 

  2. Sirsi, S.R., Borden, M.A.: Microbubble compositions, properties and biomedical applications. Bubble Sci Eng. Technol. 1, 3–17 (2009)

    Article  Google Scholar 

  3. Decuzzi, P., Godin, B., Tanaka, T., Lee, S.Y., Chiappini, C., Liu, X., Ferrari, M.: Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 141, 320–327 (2010)

    Article  Google Scholar 

  4. Postema, M., Schmitz, G.: Ultrasonic bubbles in medicine: influence of the shell. Adv. Drug Deliv. Rev. 14, 438–444 (2007)

    Google Scholar 

  5. Hynynen, K.: Ultrasound for drug and gene delivery to the brain. Adv. Drug Deliv. Rev. 60, 1209–1217 (2008)

    Article  Google Scholar 

  6. Barlow, E., Mulholland, A.J., Gachagan, A., Nordon, A., MacPherson, K.: Analysis of the Rayleigh–Plesset equation with chirp excitation. IMA J. Appl. Math. 74, 20–34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Schembri, F., Sapuppo, F., Bucolo, M.: Experimental classification of nonlinear dynamics in microfluidic bubbles’ flow. Nonlinear Dyn. 67, 2807–2819 (2012)

    Article  MathSciNet  Google Scholar 

  8. Lauterborn, W., Cramer, L.: Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett. 47, 1445–1448 (1981)

    Article  Google Scholar 

  9. Lauterborn, W., Koch, A.: Holographic observation of period-doubled and chaotic bubble oscillations in acoustic. Phys. Rev. A 35, 1974–1976 (1987)

    Article  Google Scholar 

  10. Akhatov, I.Sh., Konovalova, S.I.: Regular and chaotic dynamics of a spherical bubble. J. Appl. Math. Mech. 69, 575–584 (2005)

    Article  MathSciNet  Google Scholar 

  11. Macdonald, C.A., Gomatam, J.: Chaotic dynamics of microbubbles in ultrasonic fields. Proc. Inst. Mech. Eng. 220, 333–343 (2006)

    Google Scholar 

  12. Lauterborn, W., Kurz, T., Parlitz, U.: Experimental nonlinear physics. J. Franklin Inst. 334B, 865–907 (1997)

    Article  MATH  Google Scholar 

  13. Leighton, T.G.: The Acoustic Bubble. Academic Press, London (1994)

    Google Scholar 

  14. Prosperetti, A., Lezzi, A.: Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 168, 457–478 (1986)

    Article  MATH  Google Scholar 

  15. de Jong, N., Cornet, R., Lancee, C.T.: Higher harmonics of vibrating gas-filled microspheres. Part 1. Simulations. Ultrasonics 32, 447–453 (1994)

    Article  Google Scholar 

  16. Church, C.C.: The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am. 97, 1510–1521 (1995)

    Article  Google Scholar 

  17. Morgan, K.E., Allen, J.S., Dayton, P.A., Chomas, J.E., Klibanov, A.L., Ferrara, K.W.: Experimental and theoretical evaluation of microbubble behaviour: effect of transmitted phase and bubble size. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1494–1509 (2000)

    Article  Google Scholar 

  18. Vokurka, K.: Comparison of Rayleigh’s, Herring’s and Gilmore’s models of gas bubbles. Acustica 59, 214–219 (1986)

    MATH  Google Scholar 

  19. Glazman, R.E.: Effects of absorbed films on gas bubble radial oscillations. J. Acoust. Soc. Am. 74, 980–986 (1983)

    Article  MATH  Google Scholar 

  20. MacDonald, C.A., Sboros, V., Gomatam, J., Pye, S.D., Moran, C.M., McDicken, W.N.: A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude. Ultrasonics 43, 113–122 (2004)

    Article  Google Scholar 

  21. Esfahanian, V., Akbarzadeh, P.: Numerical investigation on a new local preconditioning method for solving the incompressible inviscid, non-cavitating and cavitating flows. J. Franklin Inst. 348, 1208–1230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stride, E., Tang, M.-X., Eckersley, R.J.: Physical phenomena affecting quantitative imaging of ultrasound contrast agents. Appl. Acoust. 70, 1352–1362 (2009)

    Article  Google Scholar 

  23. Smereka, P.: On the motion of bubbles in a periodic box. J. Fluid Mech. 254, 79–112 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sangani, A.S., Didwana, A.K.: Dynamic simulations of flows of bubbly liquids at large Reynolds numbers. J. Fluid Mech. 250, 307–337 (1993)

    Article  MATH  Google Scholar 

  25. Sugiyama, K., Takagi, S., Matsumoto, Y.: Multi-scale analysis of bubbly flows. Comput. Methods Appl. Mech. Eng. 191, 689–704 (2001)

    Article  MATH  Google Scholar 

  26. Mazzitelli, I.M., Lohse, D.: Evolution of energy in ow driven by rising bubbles. Phys. Rev. E 79, 066317 (2009)

    Article  Google Scholar 

  27. Konovalova, S.I., Akhatov, I.S.: Structure formation in acoustic cavitation. Multiph. Sci. Technol. 17, 343–371 (2005)

    Article  Google Scholar 

  28. Cartellier, A., Riviére, N.: Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds number. Phys. Fluids 13, 2165–2182 (2001)

    Article  Google Scholar 

  29. Risso, F., Ellingsen, K.: Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453, 395–410 (2002)

    Article  MATH  Google Scholar 

  30. Zenit, R., Koch, D.L., Sangani, A.S.: Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307–342 (2001)

    Article  MATH  Google Scholar 

  31. Roig, V., de Tournemine, A.: Measurement of interstitial velocity of homogeneous bubbly flows at low to moderate void fraction. J. Fluid Mech. 572, 87–110 (2007)

    Article  MATH  Google Scholar 

  32. Chahine, G.L., Liu, H.L.: A singular perturbation theory of the growth of a bubble cluster in a superheated liquid. J. Fluid Mech. 156, 257–279 (1985)

    Article  MATH  Google Scholar 

  33. Takahira, H., Akamatusu, T., Fukikawa, S.: Dynamics of a cluster of bubbles in a liquid (theoretical-analysis). JSME Int. J. Ser. B 37, 297–305 (1994)

    Article  Google Scholar 

  34. Parlitz, U., Mettin, R., Luther, S., Akhatov, I., Voss, M., Lauterborn, W.: Spatiotemporal dynamics of acoustic cavitation bubble clouds. Philos. Trans. R. Soc. Lond. A 357, 313–334 (1999)

    Article  Google Scholar 

  35. Allen, J.S., Kruse, D.E., Dayton, P.A., Ferrara, K.W.: Effect of coupled oscillations on microbubble behaviour. J. Acoust. Soc. Am. 114, 1678–1690 (2003)

    Article  Google Scholar 

  36. Garbin, V., Dollet, B., Overvelde, M.L.J.: deJong, N., Lohse, D., Versluis, M., Cojoc, D., Ferrari, E., Fabrizio, E.: Coupled dynamics of an isolated UCA microbubble pair. In: 2007 IEEE Ultrasonics Symposium, pp. 757–760 (2007)

    Chapter  Google Scholar 

  37. Chong, K.J.Y., Quek, C.Y., Dzaharudin, F., Ooi, A., Manasseh, R.: The effects of coupling and bubble size on the dynamical-systems behaviour of a small cluster of microbubbles. J. Sound Vib. 329, 687–699 (2010)

    Article  Google Scholar 

  38. Sorokin, V.S., Blekhman, I.I., Thomsen, J.J.: Motions of elastic solids in fluids under vibration. Nonlinear Dyn. 60, 639–650 (2010)

    Article  MATH  Google Scholar 

  39. Sorokin, V.S., Blekhman, I.I., Vasilkov, V.B.: Motion of a gas bubble in fluid under vibration. Nonlinear Dyn. 67, 147–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mettin, R., Lauterborn, W.: Secondary acoustic waves in a polydisperse bubbly medium. J. Appl. Mech. Tech. Phys. 44, 17–26 (2003)

    Article  Google Scholar 

  41. Bremond, N., Arora, M., Ohl, C.D., Lohse, D.: Controlled multibubble surface cavitation. Phys. Rev. Lett. 96, 224501 (2006)

    Article  Google Scholar 

  42. van Wijngaarden, L.: On equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33, 465–474 (1968)

    Article  MATH  Google Scholar 

  43. Zhang, D.Z., Prosperetti, A.: Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267, 185–219 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Y.C., Brennen, C.E.: Numerical computation of shock waves in a spherical cloud of cavitation bubbles. J. Fluids Eng. Trans. ASME 121, 872–880 (1999)

    Article  Google Scholar 

  45. Chahine, G.L.: Pressure generated by a bubble cloud collapse. Chem. Eng. Commun. 28, 355–367 (1983)

    Article  Google Scholar 

  46. Rudenko, O.V., Hedberg, C.M.: Interaction between low and high-frequency modes in a nonlinear system: gas-filled cylinder covered by a movable piston. Nonlinear Dyn. 32, 405–416 (2003)

    Article  MATH  Google Scholar 

  47. Siewe Siewe, M., Yamgou, S.B., Moukam Kakmeni, F.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010)

    Article  MATH  Google Scholar 

  48. Gao, Q., Ma, J.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58, 209–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen, H., Zuo, D., Zhang, Z., Xu, Q.: Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations. Nonlinear Dyn. 62, 623–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Takahira, H., Yamane, S., Akamatsu, T.: Nonlinear oscillations of a cluster of bubbles in a sound field (bifurcation structure). JSME Int. J. Ser. B 38, 432–439 (1995)

    Article  Google Scholar 

  51. Burns, P.N.: Harmonic imaging with ultrasound contrast agents. Clin. Radiol. 51, 50–55 (1996)

    Google Scholar 

  52. Mettin, R., Akhatov, I., Parlitz, U., Ohl, C.D., Lauterborn, W.: Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys. Rev. E 56, 2924–2931 (1997)

    Article  Google Scholar 

  53. Behnia, S., Jafari, A., Soltanpoor, W., Jahanbakhsh, O.: Nonlinear transitions of a spherical cavitation bubble. Chaos Solitons Fractals 41, 818–828 (2009)

    Article  Google Scholar 

  54. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, A.: Determining the Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  55. Manffra, E.F., Caldas, I.L., Viana, R.L., Kalinowski, H.J.: Type-I intermittency and crisis-induced intermittency in a semiconductor laser under injection current modulation. Nonlinear Dyn. 27, 185–195 (2002)

    Article  MATH  Google Scholar 

  56. Chena, Q., Zagzebski, J., Wilsona, T., Stilesa, T.: Pressure-dependent attenuation in ultrasound contrast agents. Ultrasound Med. Biol. 28, 1041–1051 (2002)

    Article  Google Scholar 

  57. Li, S.C.: Cavitation of Hydraulic Machinery. Imperial College Press, London (2001)

    Google Scholar 

  58. Chatzidai, N., Dimakopoulos, Y., Tsamopoulos, J.: Viscous effects on the oscillations of two equal and deformable bubbles under a step change in pressure. J. Fluid Mech. 673, 513–547 (2011)

    Article  MATH  Google Scholar 

  59. Ida, M.: Bubble-bubble interaction: a potential source of cavitation noise. Phys. Rev. E 79, 016307 (2009)

    Article  Google Scholar 

  60. Versluis, M., Goertz, D.E., Palanchon, P., Heitman, I.L., van der Meer, S.M., Dollet, B., de Jong, N., Lohse, D.: Microbubble shape oscillations excited through ultrasonic parametric driving. Phys. Rev. E 82, 026321 (2010)

    Article  Google Scholar 

  61. Brennen, C.: Cavitation and Bubble Dynamics. Oxford University Press, Oxford (1995)

    Google Scholar 

  62. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  Google Scholar 

  63. Saw, E., Shaw, R., Ayyalasomayajula, S., Chuang, P., Gylfason, A.: Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100, 214501 (2008)

    Article  Google Scholar 

  64. Aliseda, A., Cartellier, A., Hainaus, F., Lasheras, J.: Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77–105 (2002)

    Article  MATH  Google Scholar 

  65. Monchaux, R., Bourgoin, M., Cartellier, A.: Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304 (2010)

    Article  Google Scholar 

  66. Calzavarini, E., Kerscher, M., Lohse, D., Toschi, F.: Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 13–24 (2008)

    Article  MATH  Google Scholar 

  67. Yasui, K., Iida, Y., Tuziuti, T., Kozuka, T., Towata, A.: Strongly interacting bubbles under an ultrasonic horn. Phys. Rev. E 77, 016609 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Behnia.

Appendix: Stability Analysis

Appendix: Stability Analysis

The first-order differential equations for the specific example (Eq. 1) are of the following form:

(4)

where

or equivalently:

$$ J{\frac{dV}{dt}}=F(V,{\alpha}) $$
(5)

where θ is the cyclic variable, V(x 1,x 2,x 3,x 4,x 5,x 6,θ) an autonomous vector field and α(R 0,P 0,P a ,f,μ,μ sh,β,ρ,c,Γ,ϵ,χ,σ) is an element of the parameter space. This system generates a flow Φ={Φ T} on the phase space M=R 2 S and there exists a global map:

(6)

with \(T=\frac{1}{\nu}\), θ 0 is a constant determining the Poincaré cross-section and (x 1,x 2,x 3,x 4,x 5,x 6) the coordinates of the attractors in the Poincaré cross-section ∑ c , which is defined as:

(7)

The choice of Poincaré section is arbitrary; the only necessary condition is that the trajectory should cross the section once every acoustic cycle. For driven oscillators like the bubble model, a natural way to define ∑ is to cut the torus like state space M transversally to the cyclic θ direction at a fixed value θ 0 of θ [12].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Behnia, S., Zahir, H., Yahyavi, M. et al. Observations on the dynamics of bubble cluster in an ultrasonic field. Nonlinear Dyn 72, 561–574 (2013). https://doi.org/10.1007/s11071-012-0734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0734-2

Keywords

  • Encapsulated microbubble
  • Ultrasound contrast agents
  • Keller–Herring equation
  • Period doubling bifurcations
  • Lyapunov spectrum
  • Intermittency