Skip to main content
Log in

An interaction measure for control configuration selection for multivariable bilinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Control configuration selection is the procedure of choosing the appropriate input and output pairs for the design of decoupled (SISO or block) controllers for multivariable systems. This step is an important prerequisite for a successful industrial control strategy. In industrial practice it is often the case that systems which need to be controlled are non-linear, and linear models are insufficient to describe the behavior of the processes. The focus of this paper is on the problem of control configuration selection for a class of non-linear systems which is known as bilinear systems. A gramian-based interaction measure for control configuration selection of MIMO bilinear processes is described. In general, most of the results on the control configuration selection, which have been proposed so far, can only support linear systems. The proposed gramian-based interaction measure not only supports bilinear processes but also can be used to propose a richer sparse or block diagonal controller structure. The method is illustrated further with the help of some illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Scattolini, R.: Architectures for distributed and hierarchical model predictive control—a review. J. Process Control 19(5), 723–731 (2009)

    Article  Google Scholar 

  2. Hovd, M., Skogestad, S.: Pairing criteria for decentralised control of unstable plants. Ind. Eng. Chem. Res. 33, 2134–2139 (1994)

    Article  Google Scholar 

  3. Van de Wal, M., De Jager, B.: A review of methods for input/output selection. Automatica 37(4), 487–510 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bristol, E.H.: On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control 11, 133–134 (1966)

    Article  Google Scholar 

  5. Skogestad, S., Morari, M.: Implications of large RGA elements on control performance. Ind. Eng. Chem. Res. 26, 2323–2330 (1987)

    Article  Google Scholar 

  6. Witcher, M.F., McAvoy, T.J.: Interacting control systems: steady-state and dynamic measurement of interaction. ISA Trans. 16(3), 35–41 (1977)

    Google Scholar 

  7. Niederlinski, A.: A heuristic approach to the design of linear multivariable interacting control systems. Automatica 7, 691–701 (1971)

    Article  MATH  Google Scholar 

  8. Bristol, E.H.: Recent results on interaction in multivariable process control. In: 71st AIChE Conference, Miami, Florida, USA (1978)

    Google Scholar 

  9. Gagnon, E., Desbiens, A., Pomerleau, A.: Selection of pairing and constrained robust decentralized PI controllers. In: American Control Conference, San Diego, California, USA, pp. 4343–4347 (1999)

    Google Scholar 

  10. Conley, A., Salgado, M.E.: Gramian based interaction measure. In: The 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 5020–5022 (2000)

    Google Scholar 

  11. Salgado, M.E., Conley, A.: MIMO interaction measure and controller structure selection. Int. J. Control 77(4), 367–383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wittenmark, B., Salgado, M.E.: Hankel-norm based interaction measure for input-output pairing. In: Proc. of the 2002 IFAC World Congress, Barcelona, Spain (2002)

    Google Scholar 

  13. Halvarsson, B.: Comparison of some gramian based interaction measures. In: IEEE International Symposium on Computer Aided Control System Design (CACSD 2008), Part of IEEE Multi-Conference on Systems and Control, San Antonio, Texas, USA, pp. 138–143 (2008)

    Chapter  Google Scholar 

  14. Samuelsson, P., Halvarsson, B., Carlsson, B.: Interaction analysis and control structure selection in a wastewater treatment plant model. IEEE Trans. Control Syst. Technol. 13(6), 955–964 (2005)

    Article  Google Scholar 

  15. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Advances in Design and Control. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  16. Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77, 748–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dorissen, H.T.: Canonical forms for bilinear systems. Syst. Control Lett. 13(1), 54–160 (1989)

    MathSciNet  Google Scholar 

  18. D’Alessandro, P., Isidori, A., Ruberti, A.: Realization and structure theory of bilinear dynamic systems. SIAM J. Control 12, 517–535 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, L., Lam, J., Huang, B., Yang, G.H.: On gramians and balanced truncation of discrete-time bilinear systems. Int. J. Control 76, 414–427 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohler, R.R.: Nonlinear Systems, vol. II. Prentice Hall, New Jersey (1991)

    Google Scholar 

  21. Svoronos, S., Stephanopoulos, G., Aris, R.: Bilinear approximation of general non-linear dynamic systems with linear inputs. Int. J. Control 31, 109–126 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deutscher, J.: Nonlinear model simplification using L2-optimal bilinearization. Math. Comput. Model. Dyn. Syst. 11, 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, L., Shone, A., Ding, X.: Control of hydraulic multi-motor systems based on bilinearization. Automatica 30(9), 1445–1453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schwarz, H., Dorissen, H.T., Guo, L.: Bilinearization of nonlinear systems. In: Systems Analysis and Simulation, vol. 46, pp. 89–96. Akademie Verlag, Berlin (1988)

    Chapter  Google Scholar 

  25. Guo, L., Schwarz, H.: A control scheme for bilinear systems and application to a secondary controlled hydraulic rotary drive. In: Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, pp. 542–547 (1989)

    Chapter  Google Scholar 

  26. Juang, J.-N.: Continuous-time bilinear system identification. Nonlinear Dyn. 39, 79–94 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, C.-T.: Hybrid approach for dynamic model identification of an electro-hydraulic parallel platform. Nonlinear Dyn. 67, 695–711 (2012)

    Article  Google Scholar 

  28. Scheidl, R., Manhartsgruber, B.: On the dynamic behavior of servo-hydraulic drives. Nonlinear Dyn. 17, 247–268 (1998)

    Article  MATH  Google Scholar 

  29. van de Wouw, N., Nijmeijer, H., van Campen, D.H.: A Volterra Series approach to the approximation of stochastic nonlinear dynamics. Nonlinear Dyn. 27, 397–409 (2002)

    Article  MATH  Google Scholar 

  30. Zhang, L., Lam, J.: On H 2 model reduction of bilinear systems. Automatica 38, 205–216 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Treiber, S., Hoffman, D.W.: Multivariable constraint control using a frequency domain design approach. In: Proceeding of the 3rd Conference on Chem. Proc. Control, Amsterdam (1986)

    Google Scholar 

  32. Khaki-Sedigh, A., Moaveni, B.: Control Configuration Selection for Multivariable Plants. Lecture Notes in Control and Information Sciences. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Research Council for Technology and Production Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaker, H.R., Stoustrup, J. An interaction measure for control configuration selection for multivariable bilinear systems. Nonlinear Dyn 72, 165–174 (2013). https://doi.org/10.1007/s11071-012-0700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0700-z

Keywords

Navigation