Nonlinear Dynamics

, Volume 70, Issue 4, pp 2375–2381 | Cite as

A novel strange attractor with a stretched loop

Original Paper

Abstract

This short paper introduces a new 3D strange attractor topologically different from any other known chaotic attractors. The intentionally constructed model of three autonomous first-order differential equations derives from the coupling-induced complexity of the well-established 2D Lotka–Volterra oscillator. Its chaotification process via an anti-equilibrium feedback allows the exploration of a new domain of dynamical behavior including chaotic patterns. To focus a rapid presentation, a fixed set of parameters is selected linked to the widest range of dynamics. Indeed, the new system leads to a chaotic attractor exhibiting a double scroll bridged by a loop. It mutates to a single scroll with a very stretched loop by the variation of one parameter. Indexes of stability of the equilibrium points corresponding to the two typical strange attractors are also investigated. To encompass the global behavior of the new low-dimensional dissipative dynamical model, diagrams of bifurcation displaying chaotic bubbles and windows of periodic oscillations are computed. Besides, the dominant exponent of the Lyapunov spectrum is positive reporting the chaotic nature of the system. Eventually, the novel chaotic model is suitable for digital signal encryption in the field of communication with a rich set of keys.

Keywords

Chaotification Lotka–Volterra-like oscillator 3D nonlinear system Strange attractor Diagram of bifurcation Lyapunov exponent 

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  2. 2.
    Rössler, O.E.: Continuous chaos; four prototype equations. Ann. N.Y. Acad. Sci. 316, 376–392 (1979) CrossRefGoogle Scholar
  3. 3.
    Matsumuto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 31(12), 1055–1058 (1984) CrossRefGoogle Scholar
  4. 4.
    Chua, L.O.: The genesis of Chua’s circuit. AEÜ, Int. J. Electron. Commun. 46(4), 250–257 (1992) Google Scholar
  5. 5.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56(4), 453–462 (2009) MATHCrossRefGoogle Scholar
  7. 7.
    Dadras, S., Momeni, H.R., Qi, G.: Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 62(1–2), 391–405 (2010) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Zhang, X., Zhu, H., Yao, H.: Analysis of a new three-dimensional chaotic system. Nonlinear Dyn. 67(1), 335–342 (2012) MATHCrossRefGoogle Scholar
  9. 9.
    Zhang, J., Tang, W.: A novel bounded 4D chaotic system. Nonlinear Dyn. 67(4), 2455–2465 (2012) MATHCrossRefGoogle Scholar
  10. 10.
    Chen, G.: Control and anticontrol of chaos. In: IEEE Proceedings on Control of Oscillations and Chaos, vol. 2, pp. 181–186 (1997) Google Scholar
  11. 11.
    Sanjuán, M.A.F., Grebogi, C.: Recent Progress in Controlling Chaos. Series on Stability, Vibration and Control of Systems, Serie B, vol. 9. World Scientific, Singapore (2010) MATHGoogle Scholar
  12. 12.
    Wang, X.F.: Generating chaos in continuous-time systems via feedback control. In: Chen, G., Yu, X. (eds.) Chaos Control. Lecture Notes in Control and Information Sciences, vol. 292, pp. 179–204. Springer, Berlin (2003) CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Liu, D., Wang, Z.: Controlling Chaos: Suppression, Synchronization and Chaotification. Springer, Dordrecht (2009) MATHGoogle Scholar
  14. 14.
    Bouali, S.: Feedback loop in extended van der Pol’s equation applied to an economic model of cycles. Int. J. Bifurc. Chaos 9(4), 745–756 (1999) MATHCrossRefGoogle Scholar
  15. 15.
    Bouali, S., Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: Emulating complex business cycles by using an electronic analogue. Nonlinear Anal., Real World Appl. 13(6), 2459–2465 (2012) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei, Ser. VI 2 (1926) Google Scholar
  17. 17.
    Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins, Baltimore (1925) MATHGoogle Scholar
  18. 18.
    Redheffer, R.: Lotka–Volterra systems with constant interaction coefficients. Nonlinear Anal. 46, 1151–1164 (2001) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Arena, P., Baglio, S., Fortuna, L., Manganaro, G.: State controlled CNN: A new strategy for generating high complex dynamics. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 79(10), 1647–1657 (1996) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Quantitative Methods & Economics, Management InstituteUniversity of TunisLe BardoTunisia

Personalised recommendations