Skip to main content
Log in

Relaxation oscillation and attractive basins of a two-neuron Hopfield network with slow and fast variables

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamics of a two-neuron Hopfield network with slow and fast variables is investigated. By means of the geometric singular perturbation theory, the condition that ensures the existence of the relaxation oscillation is obtained, the period of the relaxation oscillation is determined analytically, and the shape of attractive basin of every stable equilibrium is figured out. By using the method of stability switches, the delay effect on the characteristics of the relaxation oscillation and the attractive basins is studied. Case studies are given to demonstrate the validity of theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campbell, S.R., Wang, D.L.: Relaxation oscillators with time delay coupling. Physica D 111, 151–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chumakov, G., Chumakova, N.: Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards. Chem. Eng. J. 91, 151–158 (2003)

    Article  Google Scholar 

  3. Das, P.K. II, Schieve, W.C.: A bifurcation analysis of the four dimensional generalized hopfield neural network. Physica D 88, 14–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fenichel, N.: Asymptotic stability with rate conditions. Indiania Univ. Math. J. 23, 1109–1137 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. FitzHugh, R.: Impulses and physiological states in models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  7. Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural netlet of excitation and inhibition. Physica D 89, 395–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hahnloser, R.: On the piecewise analysis of networks of linear threshold neurons. Neural Netw. 11, 691–697 (1998)

    Article  Google Scholar 

  9. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  10. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)

    Article  Google Scholar 

  11. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Izhikevich, E.M.: Synchronization of elliptic bursters. SIAM Rev. 43, 315–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ji, C., Zhang, H.: Robust stability of time-delayed hopfield neural networks with parameter perturbations. Acta Electron. Sin. 33, 115–118 (2005)

    MathSciNet  Google Scholar 

  14. Jones, C.: Geometric Singular Perturbation Theory in Dynamical Systems. Springer, Berlin (1994)

    Google Scholar 

  15. Lewis, J.E., Glass, L.: Steady states, limit cycles, and chaos in models of complex biological networks. Int. J. Bifurc. Chaos 1, 477–483 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X., Jefferys, J.G.R., Fox, J., et al.: Neuronal population oscillations of rat hippocampus during epileptic seizures. Neural Netw. 21, 1105–1111 (2008)

    Article  Google Scholar 

  17. Liu, Q., Liao, X., Liu, Y., et al.: Dynamics of an inertial two-neuron system with time delay. Nonlinear Dyn. 58, 573–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, W., Xiao, D., Yi, Y.: Relaxation oscillations in a class of predator prey systems. J. Differ. Equ. 188, 306–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mao, X.C., Hu, H.Y.: Hopf bifurcation analysis of a four-neuron network with multiple time delays. Nonlinear Dyn. 55, 95–112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marcus, C.M., Westervelt, R.M.: Stability of analog neural networks with delay. Phys. Rev. A 39, 347–359 (1989)

    Article  MathSciNet  Google Scholar 

  21. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  22. Olien, L., Béair, J.: Bifurcations, stability, and monotonicity properties of a delayed neural network model. Physica D 102, 249–363 (1997)

    Article  Google Scholar 

  23. Pakdaman, K., Grotta-Ragazzo, C., Malta, C.P., et al.: Effect of delay on the boundary of the basin of attraction in a system of two-neurons. Neural Netw. 11, 509–519 (1998)

    Article  Google Scholar 

  24. Pakdaman, K., Malta, C.P., Grotta-Ragazzo, C., et al.: Effect of delay on the boundary of the basin of attraction in a self-excited single graded-response neuron. Neural Comput. 9, 319–336 (1997)

    Article  MATH  Google Scholar 

  25. Pakdaman, K., Malta, C.P., Grotta-Ragazzo, C., et al.: Transient oscillations in continuous-time excitatory ring neural networks with delay. Phys. Rev. E 55, 3234–3248 (1997)

    Article  MathSciNet  Google Scholar 

  26. van der Pol, B.: On “relaxation-oscillations”. Lond. Edinb. Dubl. Philos. Mag. Sci. 7(2), 978–992 (1926)

    Google Scholar 

  27. Quinn, D., Gladman, B., Nicholson, P., et al.: Relaxation oscillations in tidally evolving satellites. Celest. Mech. Dyn. Astron. 67, 111–130 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Renals, S., Rohwer, R.: A study of network dynamics. J. Stat. Phys. 58, 825–849 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rinzel, J., Lee, Y.S.: Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 25, 653–675 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ruan, J., Li, L., Lin, W.: Dynamics of some neural network models with delay. Phys. Rev. E 63, 051906 (2001)

    Article  Google Scholar 

  31. Schieve, W.C., Bulsara, A.R., Davis, G.M.: Single effective neuron. Phys. Rev. A 43, 2613–2623 (1991)

    Article  Google Scholar 

  32. Simpson, D.J.W., Kuske, R.: Mixed-mode oscillations in a stochastic, piecewise-linear system. Physica D 240, 1189–1198 (2011)

    Article  MATH  Google Scholar 

  33. Smith, H.L.: Monotone semiflows generated by functional differential equations. J. Differ. Equ. 66, 420–442 (1987)

    Article  MATH  Google Scholar 

  34. Terman, D., Wang, D.: Global competition and local cooperation in a network of neural oscillators. Physica D 81, 148–176 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tikhonov, A.: Systems of differential equations containing a small parameter multiplying the derivative. Mat. Sb. 31, 575–586 (1952)

    Google Scholar 

  36. Wechselberger, M., Weckesser, W.: Bifurcations of mixed-mode oscillations in a stellate cell model. Physica D 238, 1598–1614 (2009)

    Article  MATH  Google Scholar 

  37. Wheeler, D.W., Schieve, W.C.: Stability and chaos in an inertial two-neuron system. Physica D 105, 267–284 (1997)

    Article  MATH  Google Scholar 

  38. Xu, J., Chung, K.: Dynamics for a class of nonlinear systems with time delay. Chaos Solitons Fractals 40, 28–49 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, J., Shang, H., Huang, Y.: Effects of delays on the basin boundary of attraction in a hopfield network of two delay-connecting neurons. Nonlinear Dyn. Psychol. Life Sci. 13, 161–180 (2009)

    MathSciNet  Google Scholar 

  40. Zeng, Z., Schieve, W.C., Das, P.K.: Two neuron dynamics and adiabatic elimination. Physica D 67, 224–236 (1993)

    Article  MATH  Google Scholar 

  41. Zheng, P., Tang, W., Zhang, J.: Dynamic analysis of unstable hopfield networks. Nonlinear Dyn. 61, 399–406 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zou, S., Huang, L., Chen, Y.: Linear stability and Hopf bifurcation in a three-unit neural network with two delays. Neurocomputing 70, 219–228 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of NSF of China under Grants 11032009, 11102078, and JXNSF of China CA201107114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y.G., Wang, Z.H. Relaxation oscillation and attractive basins of a two-neuron Hopfield network with slow and fast variables. Nonlinear Dyn 70, 1231–1240 (2012). https://doi.org/10.1007/s11071-012-0527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0527-7

Keywords

Navigation