Abstract
In 1695, G. Leibniz laid the foundations of fractional calculus, but mathematicians revived it only 300 years later. In 1971, L.O. Chua postulated the existence of a fourth circuit element, called memristor, but Williams’s group of HP Labs realized it only 37 years later. By looking at these interdisciplinary and promising research areas, in this paper, a novel fractional-order system including a memristor is introduced. In particular, chaotic behaviors in the simplest fractional-order memristor-based system are shown. Numerical integrations (via a predictor–corrector method) and stability analysis of the system equilibria are carried out, with the aim to show that chaos can be found when the order of the derivative is 0.965. Finally, the presence of chaos is confirmed by the application of the recently introduced 0-1 test.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cafagna, D.: Fractional calculus: a mathematical tool from the past for present engineers. IEEE Ind. Electron. Mag. 1, 35–40 (2007)
Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Sun, H., Abdelwahed, A., Onaral, B.: Linear approximation for transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984)
Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Nonlinear Non-integer Order Circuits and Systems—An Introduction. World Scientific, Singapore (2000)
Podlubny, I.: Fractional-order systems and PIλ Dμ-controllers. IEEE Trans. Autom. Control 44, 208–213 (1999)
Tseng, Ch.: Design of FIR and IIR fractional order Simpson digital integrators. Signal Process. 87, 1045–1057 (2007)
Sheu, L.J.: A speech encryption using fractional chaotic systems. Nonlinear Dyn. 65, 103–108 (2011)
Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
Wu, X., Lu, Y.: Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dyn. 57, 25–35 (2009)
Wu, X., Wang, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61, 407–417 (2010)
Chang, C.M., Chen, H.K.: Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems. Nonlinear Dyn. 62, 851–858 (2010)
Dadras, S., Momeni, H.R., Qi, G., Wang, Z.L.: Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn. 67, 1161–1173 (2012)
Zeng, C., Yang, Q., Wang, J.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011)
Pinto, C.M.A., Tenreiro Machado, J.A.: Complex order van der Pol oscillator. Nonlinear Dyn. 65, 247–254 (2011)
Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 33, 1073–1118 (1986)
Hartley, T., Lorenzo, C., Qammer, H.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42, 485–490 (1995)
Li, C.P., Deng, W.H., Xu, D.: Chaos synchronization of the Chua system with a fractional order. Physica A 360, 171–185 (2006)
Cafagna, D., Grassi, G.: Fractional-order Chua’s circuit: time-domain analysis, bifurcation, chaotic behaviour and test for chaos. Int. J. Bifurc. Chaos 18, 615–639 (2008)
Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)
Li, C.G., Chen, G.: Chaos in the fractional-order Chen system and its control. Chaos Solitons Fractals 22, 549–554 (2004)
Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fractals 27, 685–688 (2006)
Cafagna, D., Grassi, G.: Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int. J. Bifurc. Chaos 18, 1845–1863 (2008)
Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004)
Cafagna, D., Grassi, G.: Hyperchaos in the fractional-order Rössler system with lowest-order. Int. J. Bifurc. Chaos 19, 339–347 (2009)
Cafagna, D., Grassi, G.: Fractional-order chaos: a novel four-wing attractor in coupled Lorenz systems. Int. J. Bifurc. Chaos 19, 3329–3338 (2009)
Deng, W., Lu, J.: Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. Chaos 16, 043120 (2006)
Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)
Grassi, G., Severance, F.L., Mashev, E.D., Bazuin, B.J., Miller, D.A.: Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems. Int. J. Bifurc. Chaos 18, 2089–2094 (2008)
Cafagna, D., Grassi, G.: Hyperchaotic coupled Chua circuits: an approach for generating new nxm-scroll attractors. Int. J. Bifurc. Chaos 13, 2537–2550 (2003)
Petras, I.: Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 57, 975–979 (2010)
Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)
Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)
Strukov, D.B., Snider, G.S., Stewart, G.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)
Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20, 1567–1580 (2010)
Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Proceedings of IMACS, IEEE-SMC, Lille, France, pp. 963–968 (1996)
Cafagna, D., Grassi, G.: An effective method for detecting chaos in fractional-order systems. Int. J. Bifurc. Chaos 20, 669–678 (2010)
Sun, K.H., Liu, X., Zhu, C.X.: The 0-1 test algorithm for chaos and its applications. Chin. Phys. B 19, 110510 (2010)
Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Fractal and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997)
Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II. J. Roy. Astr. Soc. 13, 529–539 (1967)
Davison, M., Essex, G.C.: Fractional differential equations and initial value problems. Math. Sci. 23, 108–116 (1998)
Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)
Chua, L.O.: Local activity is the origin of complexity. Int. J. Bifurc. Chaos 15, 3435–3456 (2005)
Martin, R., Quintana, J.: Modeling of electrochemical double layer capacitors by means of fractional impedance. J. Comput. Nonlinear Dyn. 3, 1303–1309 (2008)
Maundy, B., Elwakil, A., Gift, S.: On a multivibrator that employs a fractional capacitor. Analog Integr. Circuits Signal Process. 62, 99–103 (2010)
Elwakil, A.S.: Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 4, 40–50 (2010)
Petras, I., Chen, Y.Q., Coopmans, C.: Fractional-order memristive systems. In: Proc. of IEEE Conf. on Emerging Technologies & Factory Automation (ETFA), Mallorca, Spain (2009)
Coopmans, C., Petras, I., Chen, Y.Q.: Analogue fractional-order generalized memristive devices. In: Proc. of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, CA, USA (2009)
Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2002)
Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional–order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)
Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433–2439 (2012)
Tavazoei, M.S., Haeri, M.: Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Anal. 69, 1299–1320 (2008)
Tavazoei, M.S., Haeri, M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45, 1886–1890 (2009)
Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46, 945–948 (2010)
Yazdani, M., Salarieh, H.: On the existence of periodic solutions in time-invariant fractional order systems. Automatica 47, 1834–1837 (2011)
Tavazoei, M.S., Haeri, M., Nazari, N.: Analysis of undamped oscillations generated by marginally stable fractional order systems. Signal Process. 88, 2971–2978 (2008)
Wang, Y., Li, C.: Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle? Phys. Lett. A 363, 414–419 (2007)
Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Berlin (2007)
Galeone, L., Garrappa, R.: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548–560 (2009)
Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004)
Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)
Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)
Yang, Q., Wei, Z.C., Chen, G.: An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurc. Chaos 20, 1061–1083 (2010)
Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17, 1264–1272 (2012)
Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376, 102–108 (2011)
Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. R. Soc. Lond. A 460, 603–611 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cafagna, D., Grassi, G. On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn 70, 1185–1197 (2012). https://doi.org/10.1007/s11071-012-0522-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-012-0522-z