Skip to main content
Log in

Creation–annihilation process of limit cycles in the Rayleigh–Duffing oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present paper examines the creation–annihilation process of limit cycles in the Rayleigh–Duffing oscillator with negative linear damping and negative linear stiffness. It is obtained by the perturbation method, in which the number of limit cycles in the Rayleigh–Duffing oscillator varies with the linear damping and stiffness. Numerical simulations are performed in order to confirm the analytically obtained creation–annihilation process of limit cycles. Moreover, we compare the process of limit cycles in the Rayleigh–Duffing oscillator to that of limit cycles in the van der Pol–Duffing oscillator. The difference in these oscillator is only in nonlinear forces, which causes a qualitative difference in the creation–annihilation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rocsoreanu, C., Georgescu, A., Giurgiteanu, N.: The Fitz Hugh-Nagumo Model Bifurcation and Dynamics. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  2. Stardler, B.M.R.: Heteroclinic cycles and segregation distortion. J. Theor. Biol. 183, 363–379 (1996)

    Article  Google Scholar 

  3. Van der Pol, B.: The nonlinear theory of electric oscillations. Proc. IRE 22, 1051–1085 (1934)

    Article  MATH  Google Scholar 

  4. Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F.: Comments on nonlinear dynamics of a non-ideal Duffing–Rayleigh oscillator: numerical and analytical approaches. J. Sound Vib. 319, 1136–1149 (2009)

    Article  Google Scholar 

  5. Rayleigh, L.: The Theory of Sound. Dover, New York (1945)

    MATH  Google Scholar 

  6. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  7. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  8. Yabuno, H., Kuroda, M., Soneya, T., Nishimura, K., Hayashi, K., Ashida, K.: Van der Pol-type self-excited microcantilever probe for atomic force microscopy. Jpn. J. Appl. Phys. 50, 076601 (2011)

    Article  Google Scholar 

  9. Yabuno, H.: In: Ivana, K., Michael, J.B. (eds.) The Duffing Equation—Nonlinear Oscillators and Their Behaviour, pp. 55–80. Wiley, Chichester (2011)

    Chapter  Google Scholar 

  10. Albrecht, T.R., Grutter, P., Horne, D.: Frequency-modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991)

    Article  Google Scholar 

  11. Nayfeh, A.H., Younis, M., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  12. Holmes, P.J.: Bifurcation to divergence and flutter in flow-induced oscillator: a finite dimensional analysis. J. Sound Vib. 53(4), 471–503 (1977)

    Article  MATH  Google Scholar 

  13. Margallo, J.G., Bejarano, J.D.: The limit cycles of generalized Rayleigh–Liénard oscillator. J. Sound Vib. 156, 283–301 (1992)

    Article  MATH  Google Scholar 

  14. Cveticanin, L., El-Latif, G.M.Abd., El-Naggar, A.M., Ismail, G.M.: Periodic solution of the generalized Rayleigh equation. J. Sound Vib. 318, 580–591 (2008)

    Article  Google Scholar 

  15. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)

    Book  MATH  Google Scholar 

  16. Holmes, P., Rand, D.: Phase portraits and bifurcations of the non-linear oscillator: \(\ddot{x} + (\alpha +\gamma x^{2})\dot{x} + \beta x + \delta x^{3}=0\). Int. J. Non-Linear Mech. 15, 449–458 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guckenheimer, J., Holmes, P.: Non-linear Oscillations Dynamical Systems, and Bifurcation of Vector Fields. Springer, New York (1990)

    Google Scholar 

  18. Tamura, H., Matsuzaki, K.: Numerical scheme and program for the solution and stability analysis of a steady periodic vibration problem. JSME Int. J. Ser. C, Dyn. Control Robot. Des. Manuf. 39(3), 456–463 (1996)

    Article  Google Scholar 

  19. Kamthan, P.: AUTO: Software for continuation and bifurcation problems in ordinary differential equations. http://indy.cs.concordia.ca/auto/. Accessed 27 April 2012

Download references

Acknowledgements

The authors thank Professor Kazuyuki Yagasaki at Niigata University for many useful suggestions and comments on the bifurcation analysis. The present study was supported in part by a Grant-in-Aid for Scientific Research (Scientific Research (B) 22360096) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kanai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanai, Y., Yabuno, H. Creation–annihilation process of limit cycles in the Rayleigh–Duffing oscillator. Nonlinear Dyn 70, 1007–1016 (2012). https://doi.org/10.1007/s11071-012-0508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0508-x

Keywords

Navigation