Skip to main content

Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances

Abstract

This paper studies the robust adaptive full state hybrid projective synchronization (FSHPS) scheme for a class of chaotic complex systems with uncertain parameters and external disturbances. By introducing a compensator and using nonlinear control and adaptive control, the robust adaptive FSHPS scheme is derived, which can eliminate the influence of uncertainties effectively and achieve adaptive FSHPS of the chaotic (hyperchaotic) complex systems asymptotically with a small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions of realizing FSHPS are derived as well. Moreover, we also discuss the case that parameters of chaotic complex system are complex. Finally, the complex Chen system and Lü system, and the hyperchaotic complex Lorenz system are taken as two examples and the numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The complex Lorenz equations. Physica D 4(2), 139–163 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurc. Chaos 17, 4295–4308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mahmoud, G.M., Ahmed, M.E.: Modified projective synchronization and control of complex Chen and Lü systems. J. Vib. Control 17, 1184–1194 (2010)

    Article  Google Scholar 

  4. Mahmoud, G.M., Mahmoud, E.E., Ahmed, M.E.: On the hyperchaotic complex Lü system. Nonlinear Dyn. 58, 725–738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mahmoud, G.M., Ahmed, M.E., Mahmoud, E.E.: Analysis of hyperchaotic complex Lorenz systems. Int. J. Mod. Phys. C 19, 1477–1494 (2008)

    Article  MATH  Google Scholar 

  6. Mahmoud, G.M., Mahmoud, E.E.: Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dyn. 61, 141–152 (2010)

    Article  MATH  Google Scholar 

  7. Mahmoud, G.M., Mahmoud, E.E.: Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. 67, 1613–1622 (2012)

    Article  MATH  Google Scholar 

  8. Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62, 875–882 (2010)

    Article  MATH  Google Scholar 

  9. Mahmoud, G.M., Al-Kashif, M.A., Aly, S.A.: Basic properties and chaotic synchronization of complex Lorenz system. Int. J. Mod. Phys. C 18, 253–265 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mahmoud, G.M., Bountis, T., Al-Kashif, M.A., Aly, S.A.: Dynamical properties and synchronization of complex nonlinear equations for detuned lasers. Dyn. Syst. 24, 63–79 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, P., Liu, S.: Anti-synchronization between different chaotic complex systems. Phys. Scr. 83, 65006–65014 (2011)

    Article  Google Scholar 

  12. Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3042–3045 (1999)

    Article  Google Scholar 

  13. Hu, M., Xu, Z., Zhang, R.: Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems. Commun. Nonlinear Sci. Numer. Simul. 13, 456–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chu, Y., Chang, Y.X., Zhang, J.G., Li, X.F., An, X.L.: Full state hybrid projective synchronization in hyperchaotic systems. Chaos Solitons Fractals 42, 1502–1510 (2009)

    Article  MATH  Google Scholar 

  15. Hu, M., Xu, Z., Zhang, R.: Full state hybrid projective synchronization of a general class of chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 13, 782–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sun, F., Peng, H., Luo, Q., Li, L., Yang, Y.: Parameter identification and projective synchronization between different chaotic systems. Chaos 19, 023109 (2009)

    Article  MathSciNet  Google Scholar 

  17. Peng, H., Li, L., Yang, Y., Sun, F.: Conditions of parameter identification from time series. Phys. Rev. E 83, 036202 (2011)

    Article  Google Scholar 

  18. Hu, M., Xu, Z., Zhang, R., Hu, A.: Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems. Phys. Lett. A 361, 231–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, M., Xu, Z., Zhang, R., Hu, A.: Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order. Phys. Lett. A 365, 315–327 (2007)

    Article  MathSciNet  Google Scholar 

  20. Ahn, C.K.: An H approach to anti-synchronization for chaotic systems. Phys. Lett. A 373, 1729–1733 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the suggestions of reviewers. The work was supported by the NNSF of China (Nos. 60874009 and 10971120) and the NSF of Shandong Province (No. ZR2010FM010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, P., Liu, S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances. Nonlinear Dyn 70, 585–599 (2012). https://doi.org/10.1007/s11071-012-0479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0479-y

Keywords