Advertisement

Nonlinear Dynamics

, Volume 69, Issue 4, pp 2237–2243 | Cite as

Nonlinear model identification for Artemia population motion

  • Mofeed Turky Rashid
  • Mattia FrascaEmail author
  • Abduladhem Abdulkareem Ali
  • Ramzy Salim Ali
  • Luigi Fortuna
  • Maria Gabriella Xibilia
Original Paper

Abstract

In this paper, two different nonlinear models for Artemia swarming are derived. In order to generate the data suitable for identification, a robot driving the Artemia population has been built. The obtained data have been then used to identify the parameters of a model based on Newton’s equations and a black-box NARX model implemented by neural networks. The performances obtained validate the physical hypotheses underlying the gray-box model.

Keywords

Artemia swarming LSE identification Neural network models Robotics 

References

  1. 1.
    Czirok, A., Stanley, H., Vicsek, T.: Spontaneously ordered motion of self-propelled particles. J. Phys. A, Math. Gen. 30, 1375–1385 (1997) CrossRefGoogle Scholar
  2. 2.
    Couzin, I.D., Krause, J., James, R., Ruxton, G., Franks, N.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Klavins, E., Murray, R.: Distributed algorithms for cooperative control. IEEE Pervasive Comput. 3(1), 56–65 (2004) CrossRefGoogle Scholar
  5. 5.
    Ali, A., Fortuna, L., Frasca, M., Rashid, M., Xibilia, M.: Complexity in a population of Artemia. Chaos Solitons Fractals 44(4), 306–316 (2011) CrossRefGoogle Scholar
  6. 6.
    Gulbrandsen, J.: Artemia swarming—mechanisms and suggested reasons. J. Plankton Res. 23(7), 659–669 (2001) CrossRefGoogle Scholar
  7. 7.
    Rashid, M.T., Frasca, M., Ali, A.A., Ali, R.S., Fortuna, L., Xibilia, M.G.: Artemia swarm dynamics and path tracking. Nonlinear Dyn. (2012). doi: 10.1007/s11071-011-0237-6 Google Scholar
  8. 8.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, San Diego (1983) Google Scholar
  9. 9.
    Maragos, P.A., Schafer, R.W.: Morphological skeleton representation and coding of binary images. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1228–1244 (1986) CrossRefGoogle Scholar
  10. 10.
    Sugawara, K., Watanabe, T.: A study on biologically inspired flocking robots. In: International Conference on Robotics Intelligent Systems and Signal Processing, Changsha, China (2003) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mofeed Turky Rashid
    • 1
  • Mattia Frasca
    • 2
    Email author
  • Abduladhem Abdulkareem Ali
    • 1
  • Ramzy Salim Ali
    • 1
  • Luigi Fortuna
    • 2
  • Maria Gabriella Xibilia
    • 3
  1. 1.Electrical Engineering DepartmentUniversity of BasrahBasrahIraq
  2. 2.Dipartimento di Ingegneria Elettrica Elettronica e InformaticaUniversit´a degli Studi di CataniaCataniaItaly
  3. 3.DiSIA, Facoltà di IngegneriaUniversità degli Studi di MessinaMessinaItaly

Personalised recommendations