Skip to main content
Log in

An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider the main problem of variational calculus when the derivatives are Riemann–Liouville-type fractional with incommensurate orders in general. As the most general form of the performance index, we consider a fractional integral form for the functional that is to be extremized. In the light of fractional calculus and fractional integration by parts, we express a generalized problem of the calculus of variations, in which the classical problem is a special case. Considering five cases of the problem (fixed, free, and dependent final time and states), we derive a necessary condition which is an extended version of the classical Euler–Lagrange equation. As another important result, we derive the necessary conditions for an optimization problem with piecewise smooth extremals where the fractional derivatives are not necessarily continuous. The latter result is valid only for the integer order for performance index. Finally, we provide some examples to clarify the effectiveness of the proposed theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323(11), 2756–2778 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Razminia, A., Dizaji, A.F., Majd, V.J.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Model. 55(3–4), 1106–1117 (2012)

    Article  Google Scholar 

  4. Odibat, Z., Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58(11–12), 2199–2208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Farges, C., Moze, M., Sabatier, J.: Pseudo-state feedback stabilization of commensurate fractional order systems. Automatica 46(10), 1730–1734 (2010)

    Article  MATH  Google Scholar 

  6. Razminia, A., Majd, V.J., Baleanu, D.: Chaotic incommensurate fractional order Rossler system: active control synchronization. Adv. Differ. Equ. 15, 1–12 (2011)

    MathSciNet  Google Scholar 

  7. Mendes, R.V.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55(4), 395–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Machado, J.A.T.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3492–3497 (2009)

    Article  Google Scholar 

  9. Qin, Z., Gao, X.: Fractional Liu process with application to finance. Math. Comput. Model. 50(9–10), 1538–1543 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)

    Article  MATH  Google Scholar 

  12. Rapaić, M.R., Jeličić, Z.D.: Optimal control of a class of fractional heat diffusion systems. Nonlinear Dyn. 62(1–2), 39–51 (2010)

    Article  MATH  Google Scholar 

  13. Ingman, D., Suzdalnitsky, J.: Iteration method for equation of viscoelastic motion with fractional differential operator of damping. Comput. Methods Appl. Mech. Eng. 190(37–38), 5027–5036 (2001)

    Article  MATH  Google Scholar 

  14. Podlubny, I.: Fractional Derivatives: History, Theory, Application. Utah State University, Logan (2005)

    Google Scholar 

  15. Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15(4), 583–597 (2009)

    Article  MathSciNet  Google Scholar 

  16. El-Nabulsi, R.A., Torres, D.F.M.: Fractional actionlike variational problems. J. Math. Phys. 49(5), 053521 (2008), 7 pp

    Article  MathSciNet  Google Scholar 

  17. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  19. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    MathSciNet  Google Scholar 

  20. El-Nabulsi, R.A.: A fractional approach to non-conservative Lagrangian dynamics. Fizika A 14(4), 289–298 (2005)

    Google Scholar 

  21. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yousefi, S.A., Dehghan, M., Lotfi, A.: Generalized Euler–Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl. 62(3), 987–995 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational principles with delay within Caputo derivatives. Rep. Math. Phys. 65(1), 17–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Youssef, H.M., Al-Lehaibi, E.A.: Variational principle of fractional order generalized thermoelasticity. Appl. Math. Lett. 23(10), 1183–1187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Frederico, G.S.F., Torres, D.F.M.: Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217(3), 1023–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Malinowska, A.B., Torres, D.F.M.: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59(9), 3110–3116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Machado, J.A.T.: Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4, 47–68 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13(9–10), 1269–1281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–2), 323–337 (2004)

    Article  MATH  Google Scholar 

  31. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Agrawal, O.P.: Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59(5), 1852–1864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53(1–2), 67–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Almeida, R., Torres, D.F.M.: Leitmann’s direct method for fractional optimization problems. Appl. Math. Comput. 217(3), 956–962 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Almeida, R., Malinowska, A.B., Torres, D.F.M.: A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51(3), 033503 (2010), 12 pp

    Article  MathSciNet  Google Scholar 

  36. Odzijewicz, T., Torres, D.F.M.: Fractional calculus of variations for double integrals. Balk. J. Geom. Appl. 16(2), 102–113 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Almeida, R., Torres, D.F.M.: Isoperimetric problems of the calculus of variations with fractional derivatives. Acta Math. Sci. Ser. B 32(2), 619–630 (2012)

    Google Scholar 

  38. Mozyrska, D., Torres, D.F.M.: Modified optimal energy and initial memory of fractional continuous-time linear systems. Signal Process. 91(3), 379–385 (2011)

    Article  MATH  Google Scholar 

  39. Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22(12), 1816–1820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Almeida, R., Torres, D.F.M.: Fractional variational calculus for non-differentiable functions. Comput. Math. Appl. 61(10), 3097–3104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 56(10–11), 1087–1092 (2006)

    Article  MathSciNet  Google Scholar 

  42. Baleanu, D., Trujillu, J.J.: A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1111–1115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Özdemir, N., Karadeniz, D., Iskender, B.B.: Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys. Lett. A 373(2), 221–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Filatova, D., Grzywaczewski, M., Osmolovskii, N.: Optimal control problem with an integral equation as the control object. Nonlinear Anal. 72(3–4), 1235–1246 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Tricaud, C., Chen, Y.Q.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59(5), 1644–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58(1–2), 385–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. El-Nabulsi, R.A.: A fractional approach of nonconservative Lagrangian dynamics. Fizika A 14(4), 289–298 (2005)

    Google Scholar 

  48. Kalia, R.N., Srivastava, H.M.: Fractional calculus and its applications involving functions of several variables. Appl. Math. Lett. 12(5), 19–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Oldham, K.B., Spanier, J.: The Fractional Calculus. Mathematics in Science and Engineering. Academic Press, San Diego (1974)

    Google Scholar 

  51. Adams, R.A.: Sobolev Spaces. Academic Press, Boston (1975)

    MATH  Google Scholar 

  52. Hunter, J.K., Nachtergaele, B.: Applied Analysis. World Scientific, Singapore (2005)

    Google Scholar 

  53. Folland, G.B.: Real Analysis, Modern Techniques and Their Applications. Wiley, New York (1999)

    MATH  Google Scholar 

  54. Podlubny, I., Chen, Y.Q.: Adjoint fractional differential expressions and operators. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007, Las Vegas, NV, September 4–7 (2007)

    Google Scholar 

  55. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  56. El-Nabulsi, R.A., Torres, D.F.M.: Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β). Math. Methods Appl. Sci. 30(15), 1931–1939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Pierre, D.A.: Optimization Theory with Applications. Dover, New York (1969)

    MATH  Google Scholar 

  58. Atanacković, T.M., Konjik, S., Pilipović, S.: Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A, Math. Theory 41(9) (2008). doi:10.1088/1751–8113/41/9/095201

  59. Van Brunt, B.: The Calculus of Variations. Universitext. Springer, New York (2004)

    Google Scholar 

  60. Kirk, D.E.: Optimal Control Theory, An Introduction. Prentice-Hall, Englewood Cliffs (2004)

    Google Scholar 

  61. Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dyn. 52(4), 331–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Almeida, R., Pooseh, S., Torres, D.F.M.: Fractional variational problems depending on indefinite integrals. Nonlinear Anal. 75(3), 1009–1025 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Calderón, A.J., Vinagre, B.M., Feliu, V.: Fractional order control strategies for power electronic buck converters. Signal Process. 86(10), 2803–2819 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Johari Majd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razminia, A., Majd, V.J. & Feyz Dizaji, A. An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index. Nonlinear Dyn 69, 1263–1284 (2012). https://doi.org/10.1007/s11071-012-0345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0345-y

Keywords

Navigation