Skip to main content
Log in

A new pedestrian-following model for aircraft boarding and numerical tests

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to develop a new pedestrian-following model based on the properties of the aircraft boarding process. The passengers’ motion trail, the number of interfaces, the total aircraft boarding time, the wasted time that is resulted by the interfaces and the effective aircraft boarding time are investigated in detail. The numerical results illustrate that the new model can qualitatively describe some dynamic properties of the aircraft boarding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Landeghem, H., Beuselinck, A.: Reducing passenger boarding time in airplanes: a simulation based approach. Eur. J. Oper. Res. 142, 294–308 (2002)

    Article  MATH  Google Scholar 

  2. David, C.N., Kathleen, L.M.: A study of the airline boarding problem. J. Air Transp. Manag. 14, 197–204 (2008)

    Article  Google Scholar 

  3. Yasuda, H., Fujitaka, K.: A study on the necessity of boarding control for international flights. Int. Congr. Ser. 1276, 434–435 (2005)

    Article  Google Scholar 

  4. Steffen, J.H.: Optimal boarding method for airline passengers. J. Air Transp. Manag. 14, 146–150 (2008)

    Article  Google Scholar 

  5. Bachmat, E., Elkin, M.: Bounds on the performance of back-to-front airplane boarding policies. Oper. Res. Lett. 36, 597–601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferrari, P., Nagel, K.: Robustness of efficient passenger boarding strategies for airplanes. J. Transp. Res. Board 1915, 44–54 (2005)

    Article  Google Scholar 

  7. Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A 324, 689–697 (2003)

    Article  MATH  Google Scholar 

  8. Bazargan, M.: A linear programming approach for aircraft boarding strategy. Eur. J. Oper. Res. 183, 394–411 (2007)

    Article  MATH  Google Scholar 

  9. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. B 36, 507–535 (2002)

    Article  Google Scholar 

  10. Xia, Y., Wong, S.C., Zhang, M.P., Shu, C.W., Lam, W.H.K.: An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model. Int. J. Numer. Methods Eng. 76, 337–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, L., Wong, S.C., Zhang, M.P., Shu, C.W., Lam, W.H.K.: Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp. Res. B 43, 127–141 (2009)

    Article  Google Scholar 

  12. Xia, Y., Wong, S.C., Shu, C.W.: Dynamic continuum pedestrian flow model with memory effect. Phys. Rev. E 79, 066113 (2009)

    Article  Google Scholar 

  13. Robin, Th., Antonini, G., Bierlaire, M., Cruz, J.: Specification, estimation and validation of a pedestrian walking behavior model. Transp. Res. B 43, 36–56 (2009)

    Article  Google Scholar 

  14. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  15. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  16. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  17. Kirchner, A., Schadschneider, A.: Simulation of evacuation process using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260–276 (2002)

    Article  MATH  Google Scholar 

  18. Victor, J.B., Jeffrey, L.A.: Cellular automata microsimulation for modeling bidirectional pedestrian walkways. Transp. Res. B 35, 293–312 (2001)

    Article  Google Scholar 

  19. Tang, T.Q., Huang, H.J., Shang, H.Y.: A dynamic model for the heterogeneous traffic flow consisting of car, bicycle and pedestrian. Int. J. Mod. Phys. C 21, 159–176 (2010)

    Article  MATH  Google Scholar 

  20. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieqiao Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, T., Huang, H. & Shang, H. A new pedestrian-following model for aircraft boarding and numerical tests. Nonlinear Dyn 67, 437–443 (2012). https://doi.org/10.1007/s11071-011-9992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9992-7

Keywords

Navigation