Skip to main content
Log in

Soliton dynamics and interaction in the Bose–Einstein condensates with harmonic trapping potential and time-varying interatomic interaction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Investigated in this paper is the quasi-one-dimensional Gross–Pitaevskii equation, which describes the dynamics of the Bose–Einstein condensates with the harmonic trapping potential and time-varying interatomic interaction. Via the Horita method and symbolic computation, analytic bright N-soliton solution is obtained. One-, two- and three-soliton solutions are analyzed graphically. Based on the limit analysis on the one- and two-soliton solutions, the modulation on the speed of the matter-wave bright solitons is realized. Via the parameters, the interaction between the matter-wave solitons are adjustable. Furthermore, an approach to construct the interference between the matter-wave solitons has been proposed. Finally, investigation on the three-soliton solution verifies our conclusions drawn from the one and two solitons. Our conclusions might be useful in the fields of the control on the matter-wave solitons, atom lasers, and atomic accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  2. Davis, K.B., Mewes, M.O., Anderson, M.H., van Druten, N.J., Durfe, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  Google Scholar 

  3. Kivshar, Y.S., Davies, B.L.: Dark optical solitons: physics and applications-the inverse scattering transform. Phys. Rep. 298, 81–197 (1998)

    Article  Google Scholar 

  4. Ruprecht, P.A., Holland, M.J., Burnett, K., Edwards, M.: Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51, 4704–4711 (1995)

    Article  Google Scholar 

  5. Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N.: Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. Phys. Rev. Lett. 86, 1402–1405 (2001)

    Article  Google Scholar 

  6. Carr, L.D., Clark, C.W., Reinhardt, W.P.: Stationary solutions of the one-dimensional nonlinear Schrödinger equation: I. Case of repulsive nonlinearity. Phys. Rev. A 62, 063610 (2000)

    Article  Google Scholar 

  7. Donnely, R.J.: Quantized Vortices in Helium II. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  8. Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wiema, C.E., Cornell, E.A.: Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999)

    Article  Google Scholar 

  9. Denschlag, J., Simsarian, J.E., Feder, D.L., Clark, C.W., Collins, L.A., Cubizolles, J., Deng, L., Hagley, E.W., Helmerson, K., Reinhart, W.P., Rolston, S.L., Schneider, B.I., Phillips, W.D.: Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–101 (2000)

    Article  Google Scholar 

  10. Deng, L., Hagley, E.W., En, J.W., Trippenbach, M., Band, Y., Julienne, P.S., Simsarian, J.E., Helmerson, K., Rolston, S.L., Phillips, W.D.: Four-wave mixing with matter waves. Nature 398, 218–220 (1999)

    Article  Google Scholar 

  11. Wu, Y., Yang, X.: Bose-Hubbard model on a ring: analytical results in a strong interaction limit and incommensurate filling. J. Opt. Soc. Am. B 23, 1888–1893 (2006)

    Article  Google Scholar 

  12. Wu, Y., Yang, X.: Analytical results for energy spectrum and eigenstates of a Bose-Einstein condensate in a Mott insulator state. Phys. Rev. A 68, 013608 (2003)

    Article  Google Scholar 

  13. Gross, E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961)

    Article  MATH  Google Scholar 

  14. Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)

    Article  Google Scholar 

  15. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  16. Das, G., Sarma, J.: Response to: “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ”. Phys. Plasmas 6, 4394–4397 (1999)

    Article  MathSciNet  Google Scholar 

  17. Tian, B., Gao, Y.T.: Spherical nebulons and Backlund transformation for a space or laboratory unmagnetized dusty plasma with symbolic computation. Eur. Phys. J. D 33, 59–65 (2005)

    Article  Google Scholar 

  18. Gao, Y.T., Tian, B.: Reply to: “Comment on: ‘Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ”. Phys. Lett. A 361, 523–528 (2007)

    Article  MATH  Google Scholar 

  19. Hong, W.P.: Comment on: “Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation”. Phys. Lett. A 361, 520–522 (2007)

    Article  MATH  Google Scholar 

  20. Tian, B., Gao, Y.T.: Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 243–250 (2005)

    Article  MATH  Google Scholar 

  21. Tian, B., Gao, Y.T.: Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas. Phys. Lett. A 362, 283–288 (2007)

    Article  MATH  Google Scholar 

  22. Gao, Y.T., Tian, B.: Cylindrical Kadomtsev-Petviashvili model nebulons and symbolic computation for cosmic dust ion-acoustic waves. Phys. Lett. A 349, 314–319 (2006)

    Article  Google Scholar 

  23. Tian, B., Wei, G.M., Zhang, C.Y., Shan, W.R., Gao, Y.T.: Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels. Bose-Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A 356, 8–16 (2006)

    Article  MATH  Google Scholar 

  24. Barnett, M.P., Capitani, J.F., Von Zur Gathen, J., Gerhard, J.: Symbolic calculation in chemistry: selected examples. Int. J. Quant. Chem. 100, 80–104 (2004)

    Article  Google Scholar 

  25. Liu, W.J., Meng, X.H., Cai, K.J., Lü, X., Xu, T., Tian, B.: Analytic study on soliton-effect pulse compression in dispersion-shifted fibers with symbolic computation. J. Mod. Opt. 55, 1331–1344 (2008)

    Article  MATH  Google Scholar 

  26. Tian, B., Gao, Y.T., Zhu, H.W.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: Variable-coefficient bilinear form, Bäklund transformation, Brightons and symbolic computation. Phys. Lett. A 366, 223–229 (2007)

    Article  MATH  Google Scholar 

  27. Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)

    Article  Google Scholar 

  28. Abdullaev, F.Kh., Kamchatnov, A.M., Konotop, V.V., Brazhnyi, V.A.: Adiabatic dynamics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length. Phys. Rev. Lett. 90, 230402 (2003)

    Article  Google Scholar 

  29. Moerdijk, A.J., Verhaar, B.J., Axelsson, A.: Resonances in ultracold collisions of 6Li, 7Li, and 23Na. Phys. Rev. A 51, 4852–4861 (1995)

    Article  Google Scholar 

  30. Pelinovsky, D.E., Kevrekidis, P.G., Frantzeskakis, D.J.: Averaging for solitons with nonlinearity management. Phys. Rev. Lett. 91, 240201 (2003)

    Article  Google Scholar 

  31. Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002)

    Article  Google Scholar 

  32. Regal, C.A., Greiner, M., Jin, D.S.: Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

    Article  Google Scholar 

  33. Greiner, M., Regal, C.A., Jin, D.S.: Probing the excitation spectrum of a Fermi gas in the BCS-BEC crossover regime. Phys. Rev. Lett. 94, 070403 (2005)

    Article  Google Scholar 

  34. Saito, H., Ueda, M.: Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate. Phys. Rev. Lett. 90, 040403 (2003)

    Article  Google Scholar 

  35. Montesinos, G.D., Pérez-García, V.M., Michinel, H.: Stabilized two-dimensional vector solitons. Phys. Rev. Lett. 92, 133901 (2004)

    Article  Google Scholar 

  36. Konotop, V.V., Pacciani, P.: Collapse of solutions of the nonlinear Schrödinger equation with a time-dependent nonlinearity: application to Bose-Einstein condensates. Phys. Rev. Lett. 94, 240405 (2005)

    Article  Google Scholar 

  37. Matuszewski, M., Infeld, E., Malomed, B.A., Trippenbach, M.: Fully three dimensional breather solitons can be created using Feshbach resonances. Phys. Rev. Lett. 95, 050403 (2005)

    Article  Google Scholar 

  38. Anderson, B.P., Kasevich, M.A.: Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998)

    Article  Google Scholar 

  39. Deconinck, B., Frigyik, B.A., Kutz, J.N.: Stability of exact solutions of the defocusing nonlinear Schrödinger equation with periodic potential in two dimensions. Phys. Lett. A 283, 177–184 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Milburn, G.J., Corney, J., Wright, E.M., Walls, D.F.: Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A 55, 4318–4324 (1997)

    Article  Google Scholar 

  41. Wang, S.J., Jia, C.L., Zhao, D., Luo, H.G., An, J.H.: Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate. Phys. Rev. A 68, 015601 (2003)

    Article  Google Scholar 

  42. Al Khawaja, U.: Soliton localization in Bose–Einstein condensates with time-dependent harmonic potential and scattering length. J. Phys. A 42, 265206 (2009)

    MathSciNet  Google Scholar 

  43. Zhang, X.F., Yang, Q., Zhang, J.F., Chen, X.Z., Liu, W.M.: Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap. Phys. Rev. A 77, 023613 (2008)

    Article  Google Scholar 

  44. Pérez-García, V.M., Michinel, H., Herrero, H.: Bose-Einstein solitons in highly asymmetric traps. Phys. Rev. A 57, 3837–3842 (1998)

    Article  Google Scholar 

  45. Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002)

    Article  Google Scholar 

  46. Band, Y.B., Towers, I., Malomed, B.A.: Unified semiclassical approximation for Bose-Einstein condensates: application to a BEC in an optical potential. Phys. Rev. A 67, 023602 (2003)

    Article  Google Scholar 

  47. Liang, Z.X., Zhang, Z.D., Liu, W.M.: Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Phys. Rev. Lett. 94, 050402 (2005)

    Article  Google Scholar 

  48. Kevrekidis, P.G., Frantzeskakis, D.J.: Pattern forming dynamical instabilities of Bose-Einstein condensates. Mod. Phys. Lett. B 18, 173–202 (2004)

    Article  Google Scholar 

  49. Brazhnyi, V.A., Konotop, V.V.: Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 18, 627–651 (2004)

    Article  Google Scholar 

  50. Radha, R., Kumar, V.R.: Bright matter wave solitons and their collision in Bose–Einstein condensates. Phys. Lett. A 370, 46–50 (2007)

    Article  Google Scholar 

  51. Li, H.M.: Dynamics of periodic waves in Bose-Einstein condensate with time-dependent atomic scattering length. Commun. Theor. Phys. 47, 63–68 (2007)

    Article  Google Scholar 

  52. Wang, T.Y.: Effect of time-dependent atomic scattering length on solitons in Bose-Einstein condensates with a complex potential. Commun. Theor. Phys. 51, 255–258 (2009)

    Article  MATH  Google Scholar 

  53. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  54. Yuce, C.: An exact treatment for the BEC with three-body recombination and time-dependent scattering length. Ann. Phys. 322, 1249–1253 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lü, X., Tian, B., Xu, T., Cai, K.J., Liu, W.J.: Analytical study of the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates. Ann. Phys. 323, 2554–2565 (2008)

    Article  MATH  Google Scholar 

  56. Hoston, W., You, L.: Interference of two condensates. Phys. Rev. A 53, 4254–4256 (1996)

    Article  Google Scholar 

  57. Röhrl, A., Naraschewski, M., Schenzle, A., Wallis, H.: Transition from phase locking to the interference of independent Bose condensates: theory versus experiment. Phys. Rev. Lett. 78, 4143–4146 (1997)

    Article  Google Scholar 

  58. Sun, Z.Y., Gao, Y.T., Yu, X., Meng, X.H., Liu, Y.: Inelastic interactions of the multiple-front waves for the modified Kadomtsev-Petviashvili equation in fluid dynamics plasma physics and electrodynamics. Wave Motion 46, 511–521 (2009)

    Article  MathSciNet  Google Scholar 

  59. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, Y.: Formation of vortices in a combined pressure-driven electro-osmotic flow through the insulated sharp tips under finite Debye length effects. Colloid Surf. A 366, 1–11 (2010)

    Article  Google Scholar 

  60. Wang, L., Gao, Y.T., Gai, X.L., Sun, Z.Y.: Inelastic interactions and double Wronskian solutions for the Whitham-Broer-Kaup model in shallow water. Phys. Scr. 80, 065017 (2009)

    Article  Google Scholar 

  61. Wang, L., Gao, Y.T., Gai, X.L.: Odd-soliton-like solutions for the variable-coefficient variant Boussinesq model in the long gravity waves. Z. Naturforsch. A 65, 818–828 (2010)

    Google Scholar 

  62. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation. Phys. Scr. 81, 045402 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, K., Tian, B., Liu, WJ. et al. Soliton dynamics and interaction in the Bose–Einstein condensates with harmonic trapping potential and time-varying interatomic interaction. Nonlinear Dyn 67, 165–175 (2012). https://doi.org/10.1007/s11071-011-9969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9969-6

Keywords

Navigation