Skip to main content
Log in

Adjustment of spiral drift by a travelling wave perturbation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We apply a velocity-field approach to investigate the interaction between spiral waves and the travelling wave modulation of system excitability which leads to a prediction: the direction of the straight-line drift of spiral waves is linearly adjusted by the propagation direction of the travelling waves. Direct numerical computations of the Oregonator model and the formulas of drift-velocity field confirm the validity and robustness of our theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  Google Scholar 

  2. Perc, M., Gosak, M., Marhl, M.: Periodic calcium waves in coupled cells induced by internal noise. Chem. Phys. Lett. 437, 143 (2007)

    Article  Google Scholar 

  3. Gosak, M., Marhl, M., Perc, M.: Spatial coherence resonance in excitable biochemical media induced by internal noise. Biophys. Chem. 128, 210 (2007)

    Article  Google Scholar 

  4. Frisch, T., Rica, S., Coullet, P., Gilli, J.M.: Spiral waves in liquid crystal. Phys. Rev. Lett. 72, 1471 (1994)

    Article  Google Scholar 

  5. Larionova, Y., Egorov, O., Cabrera-Granado, E., Esteban-Martin, A.: Intensity spiral patterns in a semiconductor microresonator. Phys. Rev. A 72, 033825 (2005)

    Article  Google Scholar 

  6. Jiang, L.L., Zhou, T., Perc, M., Huang, X., Wang, B.H.: Emergence of target waves in paced populations of cyclically competing species. New J. Phys. 11, 103001 (2009)

    Article  Google Scholar 

  7. Murray, J.D., Stanley, E.A., Brown, D.L.: On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. B, Biol. Sci. 229, 111 (1986)

    Article  Google Scholar 

  8. Allessie, M.A., Bonke, F.I.M., Schopman, F.J.G.: Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ. Res. 33, 54 (1973)

    Google Scholar 

  9. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Delay-enhanced coherence of spiral waves in noisy Hodgkin–Huxley neuronal networks. Phys. Lett. A 372, 5681 (2008)

    Article  MATH  Google Scholar 

  10. Weiss, J.N., Chen, P.S., Qu, Z., Karagueuzian, H.S., Garfinkel, A.: Ventricular fibrillation: How do we stop the waves from breaking. Circ. Res. 87, 1103 (2000)

    Google Scholar 

  11. Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C.R., Schiff, S.J., Wu, J.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897 (2004)

    Article  Google Scholar 

  12. Sagues, F., Sancho, J.M., Garcia-Ojalvo, J.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79, 829 (2007)

    Article  Google Scholar 

  13. Garcäa-Ojalvo, J., Sancho, J.M.: Noise in Spatially Extended Systems. Springer, New York (1999)

    Book  Google Scholar 

  14. Perc, M.: Noise-induced spatial periodicity in excitable chemical media. Chem. Phys. Lett. 410, 49 (2007)

    Article  Google Scholar 

  15. Watanabe, M.A., Fenton, F.H., Evans, S.J., Hastings, H.M., Karma, A.: Mechanisms for discordant alternans. J. Cardiovasc. Electrophysiol. 12, 196 (2001)

    Article  Google Scholar 

  16. Robert, F.G.Jr., Anna, R.G., Niels, F.O.: Cardiac electrical dynamics: maximizing dynamical heterogeneity. J. Electrocardiol. 40, s51 (2007)

    Google Scholar 

  17. Zykov, V.S., Bordiougov, G., Brandtstädter, H., Gerdes, I., Enge, H.: Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape. Phys. Rev. Lett. 92, 018304 (2004)

    Article  Google Scholar 

  18. Steinbock, O., Muller, S.C., Zykov, V.: Control of spiral-wave dynamics in active media by periodic modulation of excitability. Nature 366, 322 (1993)

    Article  Google Scholar 

  19. Mantel, R.M., Barkley, D.: Periodic forcing of spiral waves in excitable media. Phys. Rev. E 54, 4791 (1996)

    Article  Google Scholar 

  20. Deng, L.Y., Zhang, H., Li, Y.Q.: Stabilization of multiarmed spiral waves by circularly polarized electric fields. Phys. Rev. E 79, 036107 (2009)

    Article  Google Scholar 

  21. Grill, S., Zykov, V.S., Müller, S.C.: Feedback-controlled dynamics of meandering spiral waves. Phys. Rev. Lett. 75, 3368 (1995)

    Article  Google Scholar 

  22. Zykov, V.S., Mikhailov, A.S., Müller, S.C.: Controlling spiral waves in confined geometries by global feedback. Phys. Rev. Lett. 78, 3398 (1997)

    Article  Google Scholar 

  23. Perc, M.: Spatial coherence resonance in excitable media. Phys. Rev. E 72, 016207 (2005)

    Article  MathSciNet  Google Scholar 

  24. Perc, M.: Spatial decoherence induced by small-world connectivity in excitable media. New J. Phys. 7, 252 (2005)

    Article  Google Scholar 

  25. Perc, M.: Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos Solitons Fractals 31, 280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Z.Q., Zhang, H.M., Li, Y.Y., Hua, C.C., Gu, H.G., Ren, W.: Multiple spatial coherence resonance induced by the stochastic signal in neuronal networks near a saddle-node bifurcation. Physica A 389, 2642 (2010)

    Article  Google Scholar 

  27. Li, Y.Y., Zhang, H.M., Wei, C.L., Yang, M.H., Gu, H.G., Ren, W.: Stochastic signal induced multiple spatial coherence resonances and spiral waves in excitable media. Chin. Phys. Lett. 26, 030504 (2009)

    Article  Google Scholar 

  28. Davidsen, J., Glass, L., Kapral, R.: Topological constraints on spiral wave dynamics in spherical geometries with inhomogeneous excitability. Phys. Rev. E 70, 056203 (2004)

    Article  MathSciNet  Google Scholar 

  29. Zykov, V.S., Steinbock, O., Muller, S.C.: External forcing of spiral waves. Chaos 4, 509 (1994)

    Article  Google Scholar 

  30. Wu, N., Zhang, H., Ying, H.P., Cao, Z., Hu, G.: Suppression of Winfree turbulence under weak spatiotemporal perturbation. Phys. Rev. E 73, R060901 (2006)

    Article  Google Scholar 

  31. Zykov, S., Zykov, V.S., Davydov, V.: Spiral wave dynamics under traveling-wave modulation of excitable media. Europhys. Lett. 73, 335 (2006)

    Article  Google Scholar 

  32. Tyson, J.J., Fife, P.C.: Target patterns in a realistic model of the Belousov–Zhabotinskii reaction. J. Chem. Phys. 73, 2224 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningjie Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, N., Gao, H., Ma, J. et al. Adjustment of spiral drift by a travelling wave perturbation. Nonlinear Dyn 67, 159–164 (2012). https://doi.org/10.1007/s11071-011-9967-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9967-8

Keywords

Navigation