Skip to main content

Advertisement

Log in

Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a certain kind of intermittent scheme is used to control the chaos in a single chaotic Chua circuit to reach an arbitrary orbit. Furthermore, it is confirmed to be effective in suppressing spatiotemporal chaos and a spiral wave in the networks of Chua circuits with nearest-neighbor connections. The controllable and measurable variable is sampled, and the linear error between the sampled variable and the selected thresholds is fed back into the system only if the sampled variable exceeds the thresholds; otherwise, the system will develop itself without any external perturbation. In experiments, the control scheme could be realized by using the Heavside function. In the case of one single chaotic Chua circuit, the chaotic state can be controlled to reach an arbitrary n-periodical orbit (n=1,2,3,5,6,…) with appropriate feedback intensity and thresholds. It is argued that this scheme could explain the mechanism of what is called phase compression. Then the phase compression scheme is used to control a spiral wave and spatiotemporal chaos in a network of Chua circuits with 256×256 sites. The numerical simulation results confirm its effectiveness when appropriate upper and bottom thresholds are used by monitoring the measurable output voltages of the chaotic circuit in one site of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  3. Boccaletti, S., Kurths, J., Osipov, G., Valladame, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Q.Y., Lu, Q.S.: Time delay enhanced synchronization and regularization in two coupled chaotic ML neurons. Chin. Phys. Lett. 22, 543–546 (2005)

    Article  MATH  Google Scholar 

  5. Madan, R.N. (ed.): Chua’s Circuit: A Paradigm for Chaos. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  6. Ma, J., Li, F., Huang, L., Jin, W.-Y.: Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun. Nonlinear Sci. Numer. Simul. (2010). doi:10.1016/j.cnsns.2010.12.030

  7. Samie, F.H., Jose, J.: Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Cardiovasc. Res. 50, 242–250 (2001)

    Article  Google Scholar 

  8. Meron, E., Pelcé, P.: Model for spiral wave formation in excitable media. Phys. Rev. Lett. 60, 1880–1883 (1988)

    Article  MathSciNet  Google Scholar 

  9. Nash, M.P., Panfilov, A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501 (2004)

    Article  Google Scholar 

  10. Sinha, S., Pande, A., Pandit, R.: Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation. Phys. Rev. Lett. 86, 3678–3681 (2001)

    Article  Google Scholar 

  11. Ma, J., Gao, J.H., Wang, C.N., Su, J.Y.: Control spiral and multi-spiral wave in the complex Ginzburg-Landau equation. Chaos Solitons Fractals 38(2), 521–530 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yuan, G.Y., Wang, G.R., Chen, S.G.: Control of spiral waves and spatiotemporal chaos by periodic perturbation near the boundary. Europhys. Lett. 72, 908 (2005)

    Article  Google Scholar 

  13. Yuan, G.Y., Xu, A.G., Wang, G.R., Chen, S.: Control of spiral-wave dynamics using feedback signals from line detectors. Europhys. Lett. 90, 10013 (2010)

    Article  Google Scholar 

  14. Cao, Z.J., Li, P.F., Zhang, H., Xie, F., Hu, G.: Turbulence control with local pacing and its implication in cardiac defibrillation. Chaos Focus Issue: Cardiovasc. Phys. 17(1), 015107 (2007)

    MathSciNet  Google Scholar 

  15. Pivik, L.: Autowaves and spatial-temporal chaos in CNNs—Part I: a tutorial. IEEE Trans. Circuits Syst. I 42(12), 638–649 (1995)

    Article  Google Scholar 

  16. Liu, Z.Q., Zhang, H.M., Li, Y.L., Hua, C.C., Gu, H.G., Ren, W.: Multiple spatial coherence resonance induced by the stochastic signal in neuronal networks near a saddle-node bifurcation. Physica A 389, 2642–2653 (2010)

    Article  Google Scholar 

  17. Perc, M.: Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos Solitons Fractals 31(2), 280–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Perc, M.: Spatial decoherence induced by small-world connectivity in excitable media. New J. Phys. 7, 252 (2005)

    Article  Google Scholar 

  19. Ma, J., Wang, C.N., Jin, W.Y., Wu, Y.: Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin-Huxley Neurons. Appl. Math. Comput. 217(8), 3844–3852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.: Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys. Lett. A 372, 5681–5687 (2008)

    Article  MATH  Google Scholar 

  21. Luo, X.S.: Use phase compression to control chaos and hyperchaos. Acta Phys. Sin. 48(3), 402–407 (1999) (in Chinese)

    Google Scholar 

  22. Perc, M.: Spatial coherence resonance in excitable media. Phys. Rev. E 72, 016207 (2005)

    Article  MathSciNet  Google Scholar 

  23. Perc, M., Marhl, M.: Minimal model for spatial coherence resonance. Phys. Rev. E 73, 066205 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CN., Ma, J., Liu, Y. et al. Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn 67, 139–146 (2012). https://doi.org/10.1007/s11071-011-9965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9965-x

Keywords

Navigation