Skip to main content
Log in

A moment-based approach for nonlinear stochastic tracking control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper describes a new stochastic control methodology for nonlinear affine systems subject to bounded parametric and functional uncertainties. The primary objective of this method is to control the statistical nature of the state of a nonlinear system to designed (attainable) statistical properties (e.g., moments). This methodology involves a constrained optimization problem for obtaining the undetermined control parameters, where the norm of the error between the desired and actual stationary moments of state responses is minimized subject to constraints on moments corresponding to a stationary distribution. To overcome the difficulties in solving the associated Fokker–Planck equation, generally experienced in nonlinear stochastic control and filtering problems, an approximation using the direct quadrature method of moments is proposed. In this approach, the state probability density function is expressed in terms of a finite collection of Dirac delta functions, and the partial differential equation can be converted to a set of ordinary differential equations. In addition to the above mentioned advantages, the state process can be non-Gaussian. The effectiveness of the method is demonstrated in an example including robustness with respect to predefined uncertainties and able to achieve specified stationary moments of the state probability density function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, M.H.A., Vinter, R.B.: Stochastic Modeling and Control. Chapman and Hall, London (1985)

    Google Scholar 

  2. Iwasaki, T., Skelton, R.E.: On the observer-based structure of covariance controllers. Syst. Control Lett. 22(1), 17–25 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sinha, A., Miller, D.W.: Optimal sliding-mode control of a flexible spacecraft under stochastic disturbances. J. Guid. Control Dyn. 18(3), 486–492 (1995)

    Article  Google Scholar 

  4. Grigoriadis, K.M., Skelton, R.E.: Minimum-energy covariance controllers. Automatica 33, 569–578 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bratus, A., Dimentberg, M., Iourtchenko, D.: Optimal bounded response control for a second-order system under a white-noise excitation. J. Vib. Control 6(5), 741–755 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hotz, A., Skelton, R.E.: A covariance control theory. Int. J. Control 46(1), 13–32 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Young, G.E., Chang, R.J.: Optimal control of stochastic parametrically and externally excited nonlinear control systems. ASME J. Dyn. Syst. 110, 114–119 (1988)

    Article  MATH  Google Scholar 

  8. Wojtkiewicz, S.F., Bergman, L.A.: A moment specification algorithm for control of nonlinear system driven by Gaussian white noise. Nonlinear Dyn. 24(1), 17–30 (2001)

    Article  MATH  Google Scholar 

  9. Elbeyli, O., Sun, J.Q.: Covariance control of nonlinear dynamic systems via exact stationary probability density function. J. Vib. Acoust. 126(1), 71–76 (2004)

    Article  MathSciNet  Google Scholar 

  10. Jazwinski, A.: Stochastic Process and Filtering Theory. Academic Press, New York (re-publication of the version of 1970), pp. 72–74 (2007)

    Google Scholar 

  11. Fokker, A.D.: Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys. 348(43), 810–820 (1914)

    Article  Google Scholar 

  12. Planck, M.: Sitzungsber. Preuss. Akad. Wiss. 324 (1917)

  13. Zhou, Y., Chirikjian, G.S.: Probabilistic models of dead-reckoning error in nonholonomic mobile robots. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 2, pp. 1594–1599 (2003)

    Google Scholar 

  14. Spencer Jr., B.F., Bergman, L.A.: On the numerical solution of the Fokker equations for nonlinear stochastic systems. Nonlinear Dyn. 4, 357–372 (1993)

    Article  Google Scholar 

  15. Daum, F.: Nonlinear filters: beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 20(8), 57–69 (2005)

    Article  Google Scholar 

  16. Naess, A., Johnson, J.M.: Response statistics of nonlinear dynamics systems by path integration. In: IUTAM Symposium on Nonlinear Stochastic Mechanics, pp. 401–414 (1992)

  17. Sun, J.Q., Hsu, C.S.: The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation. J. Appl. Mech. 57, 1018–1025 (1990)

    Article  MathSciNet  Google Scholar 

  18. Challa, S., Bar-Shalom, Y.: Nonlinear filter design using Fokker–Planck–Kolmogorov probability density evolutions. IEEE Trans. Aerosp. Electron. Syst. 36(1), 309–315 (2000)

    Article  Google Scholar 

  19. Musick, S., Greenswald, J., Kreucher, C., Kastella, K.: Comparison of particle method and finite difference nonlinear filters for low SNR target tracking. In: The 2001 Defense Applications of Signal Processing Workshop (2001)

    Google Scholar 

  20. Yoon, J., Xu, Y.: Relative position estimation using Fokker–Planck and Bayes’ equations. In: 2007 AIAA Guidance, Control, and Dynamics Conference, August 20–23, Hilton Head, SC (2007)

    Google Scholar 

  21. Sun, J.Q., Hsu, C.S.: Cumulant-neglect closure method for asymmetric nonlinear systems driven by Gaussian white noise. J. Sound Vib. 135(2), 338–345 (1989)

    Article  MathSciNet  Google Scholar 

  22. Sobczy, K., Trebicki, J.: Maximum entropy principle in stochastic dynamics. Probab. Eng. Mech. 3(5), 102–110 (1990)

    Google Scholar 

  23. Chang, K.Y., Wang, W.J., Chang, W.J.: Constrained control for stochastic multivariable systems with hysteresis nonlinearity. Int. J. Inf. Syst. Sci. 28(7), 731–736 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, J., Rock, S.: Stochastic feedback controller design considering the dual effect. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, Aug. 21–24 (2006)

    Google Scholar 

  25. Forbes, M.G., Forbes, J.F., Guay, M.: Regulatory control design for stochastic processes: shaping the probability density function. In: American Control Conference, Denver, CO, June 4–6, pp. 3998–4003 (2003)

    Google Scholar 

  26. Attar, P., Vedula, P.: Direct quadrature method of moments solution of the Fokker–Planck equation. J. Sound Vib. 317, 265–272 (2008)

    Article  Google Scholar 

  27. Marchisio, D.L., Fox, R.O.: Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36, 43–73 (2005)

    Article  Google Scholar 

  28. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bartolini, G., Punta, E., Zolezzi, T.: Simplex methods for nonlinear uncertain sliding mode control. IEEE Trans. Autom. Control 49(6), 922–933 (2004)

    Article  MathSciNet  Google Scholar 

  30. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  31. Bartolini, G., Ferrara, A., Usai, E., Utkin, V.I.: On multi-input chattering-free second order sliding mode control. IEEE Trans. Autom. Control 45(9), 1711–1717 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Perruquetti, W., Barbot, J.P.: Sliding Mode Control in Engineering, Marcel Dekker, New York (2002), pp. 12–14

    Book  Google Scholar 

  33. Lee, J.G., Park, C.G., Park, H.W.: Sliding-mode controller design for spacecraft attitude tracking maneuvers. IEEE Trans. Aerosp. Electron. Syst. 29(4), 1328–1333 (1993)

    Article  Google Scholar 

  34. Slotine, J.E., Li, W.: Applied Nonlinear Control, Prentice Hall, New Jersey (1990), pp. 267–307

    Google Scholar 

  35. Buffington, J.M., Shtessel, Y.B.: Saturation protection for feedback linearizable systems using sliding mode theory. In: American Control Conference, Philadelphia, PA, pp. 1028–1032 (1998)

    Google Scholar 

  36. Phuah, J., Lu, J., Yahagi, T.: Chattering free sliding mode control in magnetic levitation system. IEEE Trans. Electron. Inform. Syst. 125(4), 600–606 (2005)

    Article  Google Scholar 

  37. Yao, B., Tomizuka, M.: Smooth robust adaptive sliding mode control of manipulators with guaranteed transient performance. In: American Control Conference, Baltimore, MD, pp. 1176–1180 (1994)

    Google Scholar 

  38. Kokotovic, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control, Analysis and Design. Society for Industrial and Applied Mathematics, Philadelphia, PA, pp. 1–45 (1999)

    Book  MATH  Google Scholar 

  39. Xu, Y.: Chattering free robust control for nonlinear systems. IEEE Trans. Control Syst. Technol. 16(6), 1352–1359 (2008)

    Article  Google Scholar 

  40. Hopkins, R., Xu, Y.: Position tracking control for a simulated miniature helicopter. In: 2008 AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, HA, August 18–21 (2008)

    Google Scholar 

  41. Xu, Y., Vedula, P.: A quadrature based method of moments for nonlinear filtering. Automatica 45(5), 1291–1298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Vedula, P. A moment-based approach for nonlinear stochastic tracking control. Nonlinear Dyn 67, 119–128 (2012). https://doi.org/10.1007/s11071-011-9963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9963-z

Keywords

Navigation