Skip to main content
Log in

On the effect of nonsmooth Coulomb friction on Hopf bifurcations in a 1-DoF oscillator with self-excitation due to negative damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article deals with the question, to what extent damping due to nonsmooth Coulomb friction may affect the stability and bifurcation behavior of vibrational systems with self-excitation due to negative effective damping which—for the smooth case—is related to a Hopf bifurcation of the steady state.

Without damping due to Coulomb friction, the stability of the trivial solution is controlled by the effective viscous damping of the system: as the damping becomes negative, the steady state loses stability at a Hopf point. Adding Coulomb friction changes the trivial solution into a set of equilibria, which—for oscillatory systems—is asymptotically stable for all values of effective viscous damping. The Hopf point vanishes and an unstable limit cycle appears which borders the basin of attraction of the equilibrium set. Moreover, the influence of nonlinear damping terms is discussed.

The effect of Coulomb frictional damping may be seen as adding an imperfection to the classical smooth Hopf scenario: as the imperfection vanishes, the behavior of the smooth problem is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altintas, Y., Budak, E.: Analytical prediction of stability lobes in milling. CIRP Ann. 44(1), 357–362 (1995)

    Article  Google Scholar 

  2. Beards, C.: Damping in structural joints. Shock Vib. Dig. 11, 35–41 (1979)

    Article  Google Scholar 

  3. Bolotin, V., Herrmann, G.: Nonconservative Problems of the Theory of Elastic Stability, vol. 1991. Pergamon Press, Elmsford (1963)

    MATH  Google Scholar 

  4. Boyaci, A., Hetzler, H., Seemann, W., Proppe, C., Wauer, J.: Analytical bifurcation analysis of a rotor supported by floating ring bearings. Nonlinear Dyn. 57(4), 497–507 (2009)

    Article  MATH  Google Scholar 

  5. Bronstein, I., Semendjajew, K., Musiol, G., Mühlig, H.: Taschenbuch der Mathematik. Harri Deutsch Verlag (2008)

  6. Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  7. Den Hartog, J.: Mechanical Vibrations. Dover, New York (1985). (Originally published: McGraw-Hill 1956)

    Google Scholar 

  8. D’Souza, A., Dweib, A.: Self-excited vibrations induced by dry friction, part 2: Stability and limit-cycle analysis. J. Sound Vib. 137(2), 177–190 (1990)

    Article  Google Scholar 

  9. Dweib, A., D’Souza, A.: Self-excited vibrations induced by dry friction, Part 1: Experimental study. J. Sound Vib. 137(2), 163–175 (1990)

    Article  Google Scholar 

  10. Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Springer, Berlin (1988)

    Google Scholar 

  11. Fulcher, L., Scherer, R., Melnykov, A., Gateva, V., Limes, M.: Negative Coulomb damping, limit cycles, and self-oscillation of the vocal folds. Am. J. Phys. 74, 386 (2006)

    Article  Google Scholar 

  12. Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. 125(1), 169–181 (1997)

    Article  MATH  Google Scholar 

  13. Genta, G.: Dynamics of Rotating Systems. Springer, Berlin (2005)

    Book  Google Scholar 

  14. Hagedorn, P.: Non-linear Oscillations. Clarendon, Oxford (1988)

    MATH  Google Scholar 

  15. Hahn, W.: Stability of Motion. Springer, Berlin (1967)

    MATH  Google Scholar 

  16. Hetzler, H.: On moving continua with contacts and sliding friction: Modeling, general properties and examples. Int. J. Solids Struct. 46(13), 2556–2570 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hetzler, H., Schwarzer, D., Seemann, W.: Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise. Commun. Nonlinear Sci. Numer. Simul. 12(1), 83–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hetzler, H., Schwarzer, D., Seemann, W.: Steady-state stability and bifurcations of friction oscillators due to velocity-dependent friction characteristics. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 221(3), 401–412 (2007)

    Google Scholar 

  19. Hetzler, H., Seemann, W.: Friction induced flutter instability—on modeling and simulation of brake-squeal. Proc. Appl. Math. Mech. 8(1) (2008)

  20. Ibrahim, R.: Friction-induced vibration, chatter, squeal and, chaos; Part I: Mechanics of contact and friction. Appl. Mech. Rev. 47(7), 209–226 (1994)

    Article  Google Scholar 

  21. Insperger, T., Gradišek, J., Kalveram, M., Stépán, G., Winert, K., Govekar, E.: Machine tool chatter and surface location error in milling processes. J. Manuf. Sci. Eng. 128, 913 (2006)

    Article  Google Scholar 

  22. Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  23. LaSalle, J., Lefschetz, S.: Stability by Lyapunov’s Direct Method (with Applications). Academic Press, New York (1961)

    Google Scholar 

  24. Leine, R., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems, vol. 18. Springer, Berlin (2004)

    MATH  Google Scholar 

  25. Leine, R., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  26. Maidanik, G.: Energy dissipation associated with gas-pumping in structural joints. J. Acoust. Soc. Am. 40, 1064 (1966)

    Article  Google Scholar 

  27. Muszynska, A.: Whirl and whip–rotor/bearing stability problems. J. Sound Vib. 110(3), 443–462 (1986)

    Article  Google Scholar 

  28. Myers, C.: Bifurcation theory applied to oil whirl in plain cylindrical journal bearings. J. Appl. Mech. 51, 244 (1984)

    Article  MATH  Google Scholar 

  29. Popp, K.: Nichtlineare Schwingungen mechanischer Strukturen mit Füge-oder Kontaktstellen. Z. Angew. Math. Mech. 74(3), 147–165 (1994)

    Article  Google Scholar 

  30. Tondl, A.: Some Problems of Rotor Dynamics. Publishing House of the Czechoslovak Academy of Sciences (1965)

  31. Tondl, A.: Quenching of self-excited vibrations: effect of dry friction. J. Sound Vib. 45(2), 285–294 (1976)

    Article  MATH  Google Scholar 

  32. Yabuno, H., Kunitho, Y., Kashimura, T.: Analysis of the van der Pol system with Coulomb friction using the method of multiple scales. J. Vib. Acoust. 130, 041008 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Hetzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetzler, H. On the effect of nonsmooth Coulomb friction on Hopf bifurcations in a 1-DoF oscillator with self-excitation due to negative damping. Nonlinear Dyn 69, 601–614 (2012). https://doi.org/10.1007/s11071-011-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0290-1

Keywords

Navigation