Skip to main content
Log in

Low-voltage closed loop MEMS actuators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An efficient electrostatic resonator is designed by adding a low voltage controller to an electrostatic actuator. The closed loop actuator shows stable, and bi-sable behaviors with bounded chaotic oscillations as large as 117% of the capacitor gap. The controller voltage is decreased from a previously designed resonator to less than 9 V thereby reducing the load on the controller circuit components. Bifurcation diagrams are obtained showing the frequency and magnitude of AC voltage required for chaotic oscillations to develop. The information entropy, a measure of chaotic characteristic, is calculated for the micro-resonator and is found to be 0.732.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Epureanu, B.I., Tang, L.S., Paidoussis, M.P.: Exploiting chaotic dynamics for detecting parametric variations in aeroelastic systems. AIAA J. 42(4), 728–735 (2004)

    Article  Google Scholar 

  2. Epureanu, B.I., Yin, S.-H.: Identification of damage in an aeroelastic system based on attractor deformations. Comput. Struct. 82(31–32), 2743–2751 (2004)

    Article  Google Scholar 

  3. Epureanu, B.I., Yin, S.H., Derriso, M.M.: High-sensitivity damage detection based on enhanced nonlinear dynamics. Smart Mater. Struct. 14(2), 321–327 (2005)

    Article  Google Scholar 

  4. Ghafari, S.: A fault diagnosis system for rotary machinery supported by rolling element bearings. PhD thesis, University of Waterloo (2007)

  5. Yin, S.-H., Epureanu, B.I.: Experimental enhanced nonlinear dynamics and identification of attractor morphing modes for damage detection. J. Sound Acoust. 129(6), 763–770 (2007)

    Google Scholar 

  6. Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenz-based chaotic circuits with applications to communications. In: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, pp. 626–633 (1993)

    Google Scholar 

  7. Park, K., Chen, Q., Lai, Y.C.: Energy enhancement and chaos control in microelectromechanical systems. Phys. Rev. 77, 026210-1-6 (2008)

    Google Scholar 

  8. Buks, E., Yurke, B.: Mass detection with a nonlinear nanomechanical resonator. Phys. Rev. E 74(4), 46619-461-9 (2006)

    Article  Google Scholar 

  9. Conley, W.G., Raman, A., Krousgrill, C.M., Mohammadi, S.: Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators. Nano Lett. 8(6), 1590–1595 (2008)

    Article  Google Scholar 

  10. Chen, Q., Huang, L., Lai, Y.C., Grebogi, C., Dietz, D.: Extensively chaotic motion in electrostatically driven nanowires and applications. Nano Lett. 10(2), 406–413 (2010)

    Article  Google Scholar 

  11. Basso, M., Giarré, L., Dahleh, M., Mezic, I.: Numerical analysis of complex dynamics in atomic force microscopes. In: Proceedings of IEEE International Conference on Control Applications, Trieste, Italy, pp. 1026–1030 (1998)

    Google Scholar 

  12. Ashhab, M., Salapaka, M.V., Dahleh, M., Mezic, I.: Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. Nonlinear Dyn. 20(3), 197–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ashhab, M., Salapaka, M.V., Dahleh, M., Mezic, I.: Dynamical analysis and control of microcantilevers. Automatica 35(10), 1663–1670 (1999)

    Article  MATH  Google Scholar 

  14. Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R.: Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment. Phys. Rev. B, Condens. Matter Mater. Phys. 66(11), 115409/1-10 (2002)

    Google Scholar 

  15. Raman, A., Hu, S.: Chaos in dynamic atomic force microscopy. In: 2006 International Symposium on Nonlinear Theory and Its Applications, Bologna, Italy, pp. 911–914 (2006)

    Google Scholar 

  16. Jamitzky, F., Stark, M., Bunk, W., Heckl, W.M., Stark, R.W.: Chaos in dynamic atomic force microscopy. Nanotechnology 17(7), S213–S220 (2006)

    Article  Google Scholar 

  17. Bienstman, J., Vandewalle, J., Puers, R.: Autonomous impact resonator: A new operating principle for a silicon resonant strain gauge. Sens. Actuators A, Phys. 66(1–3), 40–49 (1998)

    Article  Google Scholar 

  18. Wang, Y.C., Adams, S.G., Thorp, J.S., MacDonald, N.C., Hartwell, P., Bertsch, F.: Chaos in MEMS, parameter estimation and its potential application. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(10), 1013–1020 (1998)

    Article  Google Scholar 

  19. De, S.K., Aluru, N.R.: Complex nonlinear oscillations in electrostatically actuated microstructures. J. Microelectromech. Syst. 15(2), 355–369 (2006)

    Article  Google Scholar 

  20. DeMartini, B.E., Butterfield, H.E., Moehlis, J., Turner, K.L.: Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation. J. Microelectromech. Syst. 16(6), 1314–1323 (2007)

    Article  Google Scholar 

  21. Zhang, Y., Wang, Y.S., Li, Z.H., Huang, Y.B., Li, D.C.: Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. J. Microelectromech. Syst. 16(3), 684–693 (2007)

    Article  Google Scholar 

  22. Krylov, S.: Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures. Int. J. Non-Linear Mech. 42(4), 626–642 (2007)

    Article  Google Scholar 

  23. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.: The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18(5), 1–20 (2008)

    Article  Google Scholar 

  24. Das, K., Batra, R.C.: Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. J. Micromech. Microeng. 19(3), 1–19 (2009)

    Article  Google Scholar 

  25. Rhoads, J.F., Shaw, S.W., Moehlis, J., Demartini, B.E., Turner, K.L., Zhang, W.: Nonlinear response of parametrically-excited MEMS. In: DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 1A, pp. 453–461 (2005)

    Google Scholar 

  26. Zhang, W.-M., Meng, G.: Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation. IEEE Sens. J. 7(3), 370–380 (2007)

    Article  Google Scholar 

  27. Liu, S., Davidson, A., Lin, Q.: Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system. J. Micromech. Microeng. 14(7), 1064–1073 (2004)

    Article  Google Scholar 

  28. Younis, M.I., Ouakad, H., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19(3), 647–656 (2010)

    Article  Google Scholar 

  29. Ouakad, H., Younis, M.I.: The dynamic behavior of MEMS arch resonators actuated electrically. Int. J. Non-Linear Mech. 45(7), 704–713 (2010)

    Article  Google Scholar 

  30. Lu, M.S.-C., Fedder, G.K.: Position control of parallel-plate microactuators for probe-based data storage. J. Microelectromech. Syst. 13(5), 759–769 (2004)

    Article  Google Scholar 

  31. Alsaleem, F.M., I Younis, M.: Integrity analysis of electrostatically actuated resonators with delayed feedback controller. J. Dyn. Syst. Meas. Control 133(3), 031011 (2011) (8 pages)

    Article  Google Scholar 

  32. Alsaleem, F.M., Younis, M.I.: Stabilization of electrostatic MEMS resonators using delayed feedback controller. Smart Mater. Struct. 19, 035016 (2010)

    Article  Google Scholar 

  33. Towfighian, S., Heppler, G.R., Abdel-Rahman, E.M.: Analysis of a chaotic electrostatic micro-oscillator. J. Comput. Nonlinear Dyn. 6(1), 011001-10 (2011)

    Article  Google Scholar 

  34. Towfighian, S., Heppler, G.R., Abdel-Rahman, E.M.: A low voltage controller for a chaotic micro resonator. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences. pp. DETC2010–28990, Montreal, QC, Canada (2010)

  35. Towfighian, S.: A Large-stroke electrostatic micro-actuator. PhD thesis, University of Waterloo (2010)

  36. Towfighian, S., Seleim, A., Abdel-Rahman, E.M., Heppler, G.R.: A large stroke electrostatic micro-actuator. J. Micromech. Microeng. 21, 075023 (2011) (12 pages)

    Article  Google Scholar 

  37. Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4(2), 021010-1-15 (2009)

    Article  Google Scholar 

  38. Moon, F.C.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley-Interscience, New York (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrzad Towfighian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Towfighian, S., Heppler, G.R. & Abdel-Rahaman, E.M. Low-voltage closed loop MEMS actuators. Nonlinear Dyn 69, 565–575 (2012). https://doi.org/10.1007/s11071-011-0287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0287-9

Keywords

Navigation