Skip to main content

Advertisement

Log in

Fuzzy distribution fitting energy-based active contours for image segmentation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an unsupervised fuzzy energy-based active contour model for image segmentation, based on techniques of curve evolution. The paper proposes a fuzzy energy functional which involves intensity distributions in regions of image to segment and value of fuzzy membership functions. The intensity distributions are derived using a Gaussian mixture model (GMM)-based intensity distribution estimator. Meanwhile, the fuzzy membership functions valued in [0,1] is used to measure the association degree of each image pixel to the region outside and inside the curve. The proposed energy functional is then incorporated into a pseudo-level set formulation. To minimize the energy functional, instead of solving Euler–Lagrange equation of underlying problem, we utilize a direct method to calculate the alterations of the fuzzy energy. In addition, since the parameters of intensity distributions are preestimated, the proposed model avoids the step of updating them at each iteration of curve evolution. The proposed model therefore overcomes the initialization problem of common gradient-descent-based active contour models and converges quickly. Besides, it can work with images with blurred object boundaries. In addition, the extension of the model for the more general case of local space-varying intensities enables dealing with images with intensity inhomogeneity. Experimental results for synthetic and real images validate the desired performances of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 773–781 (1987)

    Article  Google Scholar 

  2. Rother, C., Kolmogorov, V., Blake, A.: Graph-cut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)

    Article  Google Scholar 

  3. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249–268 (2002)

    Article  Google Scholar 

  4. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  5. Pham, D.L., Prince, J.L.: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit. Lett. 20(1), 57–68 (1999)

    Article  MATH  Google Scholar 

  6. Pham, D.L.: Spatial models for fuzzy clustering. Comput. Vis. Image Underst. 84, 285–297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Joshi, N., Brady, M.: Non-parametric mixture model based evolution of level sets and application to medical images. Int. J. Comput. Vis. 88(1), 52–68 (2010)

    Article  Google Scholar 

  8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, New York (2008)

    Google Scholar 

  9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  10. Gooya, A., Liao, H., Matsumiya, K., Masamune, K., Masutani, Y., Dohi, T.: A variational method for geometric regularization of vascular segmentation in medical images. IEEE Trans. Image Process. 17(8), 1295–1312 (2008)

    Article  MathSciNet  Google Scholar 

  11. Pham, D., Xu, C., Prince, J.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–337 (2000)

    Article  Google Scholar 

  12. Wu, Y.T., Shyu, K.K., Chen, T.R., Guo, W.Y.: Using three-dimensional fractal dimension to analyze the complexity of fetal cortical surface from magnetic resonance images. Nonlinear Dyn. 58(4), 745–752 (2009)

    Article  MATH  Google Scholar 

  13. He, L., Peng, Z., Everding, B., Wang, X., Han, C., Weiss, K., Wee, W.G.: A comparative study of deformable contour methods on medical image segmentation. Image Vis. Comput. 26(2), 141–163 (2008)

    Article  Google Scholar 

  14. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulation. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  16. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  17. Xu, N., Ahuja, N., Bansal, R.: Object segmentation using graph cuts based active contours. Comput. Vis. Image Underst. 107(3), 210–224 (2007)

    Article  Google Scholar 

  18. Cremers, D., Sochen, N., Schnorr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Proceedings of the 4th International Conference on Scale Space Methods in Computer Vision, The Isle of Skye, UK, pp. 388–400 (2003)

    Chapter  Google Scholar 

  19. Chan, T., Zhu, W.: Level set based shape prior segmentation. In: Proceeding of Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, pp. 1164–1170 (2005)

    Google Scholar 

  20. Riklin-Raviv, T., Kiryati, N., Sochen, N.: Prior-based segmentation and shape registration in the presence of projective distortion. Int. J. Comput. Vis. 72(3), 309–328 (2007)

    Article  Google Scholar 

  21. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  23. Li, C., Kao, C., Gore, J., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  24. He, L., Zheng, S., Wang, L.: Integrating local distribution information with level set for boundary extraction. J. Vis. Commun. Image Represent. 21(4), 343–354 (2010)

    Article  Google Scholar 

  25. Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229–251 (1994)

    Article  Google Scholar 

  26. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  27. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piovano, J., Papadopoulo, T.: Local statistics based region segmentation with automatic scale selection. In: Proceedings of European Conference in Computer Vision (ECCV), Marseille, France, pp. 486–499 (2008)

    Google Scholar 

  29. Gibou, F., Fedkiw, R.: A fast hybrid k-means level set algorithm for segmentation. In: Proceedings of 4th Annual Hawaii International Conference on Statistics and Mathematics, Honolulu, HI, USA, pp. 281–291 (2005)

    Google Scholar 

  30. Song, B., Chan, T.: A fast algorithm for level set based optimization. UCLA CAM Report 02-68 (2002)

  31. Shi, Y., Karl, W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Trans. Image Process. 17(5), 645–656 (2008)

    Article  MathSciNet  Google Scholar 

  32. Bernard, O., Friboulet, D., Thevenaz, P., Unser, M.: Variational B-spline level-set: a linear filtering approach for fast deformable model evolution. IEEE Trans. Image Process. 18(6), 1179–1191 (2009)

    Article  MathSciNet  Google Scholar 

  33. Sanborn, G.G., Shabana, A.A.: A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dyn. 58(3), 565–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61(1–2), 193–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krinidis, S., Chatzis, V.: Fuzzy energy-based active contour. IEEE Trans. Image Process. 18(12), 2747–2755 (2009)

    Article  MathSciNet  Google Scholar 

  36. Shyu, K.K., Pham, V.T., Tran, T.T., Lee, P.L.: Global and local fuzzy energy based-active contours for image segmentation. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0088-1

    Google Scholar 

  37. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  38. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  39. He, L., Osher, S.: Solving the Chan–Vese model by a multiphase level set algorithm based on the topological derivative level set algorithm based on the topological derivative. UCLA CAM Report 06-56 (2006)

  40. Pan, Y., Birdwell, D.J., Djouadi, S.M.: Efficient implementation of the Chan–Vese models without solving PDEs. In: Proceeding of International Workshop on Multimedia Signal Processing, Victoria, BC, Canada, pp. 350–353 (2006)

    Chapter  Google Scholar 

  41. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  42. Zhang, L., Jiang, M., Yang, M.: An improved local distribution fitting model. In: 3rd International Congress on Image and Signal Processing (CISP2010), Yantai, China, pp. 1322–1326 (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Kai Shyu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyu, KK., Tran, TT., Pham, VT. et al. Fuzzy distribution fitting energy-based active contours for image segmentation. Nonlinear Dyn 69, 295–312 (2012). https://doi.org/10.1007/s11071-011-0265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0265-2

Keywords

Navigation