Skip to main content
Log in

Control of Julia sets of the complex Henon system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the complicated weather behavior, Lorenz system is an important model in the research of the convection processes in the atmosphere. The same basic properties of Lorenz system can be observed in the discrete Henon map which is a two-dimensional dynamical system. It is necessary to study and control the Julia sets of the complex Henon map, since the complex variable Henon map depicts some complicated behaviors and Julia set is an important notion to describe these phenomena. In this paper, the gradient control method and the auxiliary reference feedback control method are taken on the Julia sets of the two dimensional complex Henon system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Ge, Z.M., Li, S.Y.: Yang and Yin parameters in the Lorenz system. Nonlinear Dyn. 62, 105–117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Morales, C.A., Pacifico, M.J.: Mixing attractors for 3-flows. Nonlinearity 14, 359–378 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kiriki, S., Soma, T.: Parameter-shifted shadowing property for geometric Lorenz attractors. Trans. Am. Math. Soc. 357(4), 1325–1339 (2004)

    Article  MathSciNet  Google Scholar 

  5. Erik, M.B.: Review of chaos communication by feedback control of symbolic dynamics. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13(2), 269–285 (2003)

    Article  MATH  Google Scholar 

  6. Irene, M.M.: The extended Malkus–Robbins dynamo as a perturbed Lorenz system. Nonlinear Dyn. 41, 191–210 (2005)

    Article  MATH  Google Scholar 

  7. Henon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beri, S., Mannella, R., Luchinsky, D.G., Silchenko, A.N., McClintock, P.V.E.: Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 72, 036131 (2005)

    Article  MathSciNet  Google Scholar 

  9. Biham, O., Wenzel, W.: Unstable periodic orbits and the symbolic dynamics of the complex Henon map. Phys. Rev. A 42(8), 4639–4646 (1990)

    Article  MathSciNet  Google Scholar 

  10. Anrievskii, B.R., Fradkov, A.L.: Control of chaos: Methods and applications. I. Methods. Autom. Remote Control 64(5), 673–713 (2003)

    Article  MathSciNet  Google Scholar 

  11. Soriano, D.C., Fazanaro, F.I., Suyama, R., Oliveira, J.R., Attux, R., Madrid, M.K.: A method for Lyapunov spectrum estimation using cloned dynamics and its application to the discontinuously-excited FitzHugh-Nagumo model. Nonlinear Dyn. doi:10.1007/s11071-011-9989-2

  12. Zhang, L., Jiang, H., Bi, Q.: Reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems. Nonlinear Dyn. 59, 529–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fornæss, J.E.: The Julia set of Henon maps. Math. Ann. 334, 457–464 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of C2. VI. Connectivity of J. Ann. Math. 148(2), 695–735 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dujardin, R.: Henon-like mappings in C2. Am. J. Math. 126, 439–472 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fornæss, J.E., Sibony, N.: Complex Henon mappings in C2 and Fatou–Bieberbach domains. Duke Math. J. 65, 345–380 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marmi, S.: A method for accurate stability bounds in a small denominator problem. J. Phys. A 21, L961–L966 (1988)

    Article  MathSciNet  Google Scholar 

  18. Manton, N., Nauenberg, M.: Universal scaling behaviour for iterated maps in the complex plane. Commun. Math. Phys. 89, 555–570 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rammal, R.: Spectrum of harmonic excitations on fractals. J. Phys. (Paris) 45, 191–206 (1984)

    Article  MathSciNet  Google Scholar 

  20. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lai, Y.C., Ding, M., Grebogi, C.: Controlling Hamiltonian chaos. Phys. Rev. E 47(1), 86–92 (1993)

    Article  MathSciNet  Google Scholar 

  22. Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rezaie, B., Jahed Motlagh, M.-R.: An adaptive delayed feedback control method for stabilizing chaotic time-delayed systems. Nonlinear Dyn. 64, 167–176 (2011)

    Article  MathSciNet  Google Scholar 

  24. Siewe Siewe, M., Yamgoue, S.B., Moukam Kakmeni, F.M., Tchawoua, C.: Chaos control self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Devaney, R.L.: Chaotic bursts in nonlinear dynamical systems. Science 235, 342–345 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Guo, X. Control of Julia sets of the complex Henon system. Nonlinear Dyn 69, 185–192 (2012). https://doi.org/10.1007/s11071-011-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0256-3

Keywords

Navigation